scholarly journals Antizyme inhibitor 1 genetic polymorphisms associated with diabetic patients validated in the livers of diabetic mice

Author(s):  
Cheng‑Hsu Chen ◽  
Yeh‑Han Wang ◽  
Shang‑Feng Tsai ◽  
Tung‑Min Yu ◽  
Shih‑Yin Chen ◽  
...  
Author(s):  
Sarah Abdullah ◽  
Yazun Jarrar ◽  
Hussam Alhawari ◽  
Eyada Abed ◽  
Malek Zihlif

Background: Endothelial nitric oxide synthase (eNOS) plays a major role in the response of antihypercholesterol statin drugs. Genetic polymorphisms in the eNOS gene affect the activity of eNOS and thereby modulate statin response. Objectives: This study investigated the influence of major functional eNOS gene polymorphisms (rs2070744, rs1799983, and rs61722009) on the lipid profile of type 2 diabetes mellitus (T2DM) Jordanian patients treated with atorvastatin. Methods: The sample comprised 103 T2DM patients who attended the diabetes clinic of Jordan University Hospital. The T2DM patients had regularly been taking 20 mg atorvastatin. The atorvastatin response was calculated by measuring the lipid profile before and after three months of atorvastatin treatment. The eNOS genotypes of the subjects were analyzed using polymerase chain reaction (PCR) followed by restriction fragment length polymorphism (RFLP) assay. Results: No significant association was found between eNOS genetic polymorphisms and the response to atorvastatin (ANOVA, p > 0.05). In addition, no significant difference in the frequency of eNOS genotypes was found between T2DM patients and healthy subjects. However, patients with eNOS rs1799983, 4a/4a, and rs61722009 G/G genotypes showed a significantly lower levels of baseline total cholesterol (TC) and low density lipoprotein (LDL) than did patients carrying the rs1799983 4b/4b or rs61722009 T/T genotype (p < 0.05). The eNOS rs1799983 and rs61722009 polymorphisms were in complete linkage disequilibrium (D' = 1). Conclusion: Although no association was found between eNOS genetic polymorphisms and atorvastatin response, there was a significant association between the rs1799983 and rs61722009 genotypes and baselines levels of TC and LDL in Jordanian T2DM patients. These genetic variants affect cholesterol levels and may play a role in the susceptibility to cardiovascular diseases in T2DM patients. Further studies are needed to validate these findings.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Chui Yiu Bamboo Chook ◽  
Francis M. Chen ◽  
Gary Tse ◽  
Fung Ping Leung ◽  
Wing Tak Wong

Abstract Cardiovascular disease is a major cause of mortality in diabetic patients due to the heightened oxidative stress and pro-inflammatory state in vascular tissues. Effective approaches targeting cardiovascular health for diabetic patients are urgently needed. Crocodile blood, an emerging dietary supplement, was suggested to have anti-oxidative and anti-inflammatory effects in vitro, which have yet to be proven in animal models. This study thereby aimed to evaluate whether crocodile blood can protect vascular function in diabetic mice against oxidation and inflammation. Diabetic db/db mice and their counterparts db/m+ mice were treated daily with crocodile blood soluble fraction (CBSF) or vehicle via oral gavage for 4 weeks before their aortae were harvested for endothelium-dependent relaxation (EDR) quantification using wire myograph, which is a well-established functional study for vascular function indication. Organ culture experiments culturing mouse aortae from C57BL/6 J mice with or without IL-1β and CBSF were done to evaluate the direct effect of CBSF on endothelial function. Reactive oxygen species (ROS) levels in mouse aortae were assessed by dihydroethidium (DHE) staining with inflammatory markers in endothelial cells quantified by quantitative polymerase chain reaction (qPCR). CBSF significantly improved deteriorated EDR in db/db diabetic mice through both diet supplementation and direct culture, with suppression of ROS level in mouse aortae. CBSF also maintained EDR and reduced ROS levels in mouse aortae against the presence of pro-inflammatory IL-1β. Under the pro-inflammatory state induced by IL-1β, gene expressions of inflammatory cytokines were downregulated, while the protective transcripts UCP2 and SIRT6 were upregulated in endothelial cells. Our study suggests a novel beneficial effect of crocodile blood on vascular function in diabetic mice and that supplementation of diet with crocodile blood may act as a complementary approach to protect against vascular diseases through anti-oxidation and anti-inflammation in diabetic patients. Graphical abstract


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guodong Li ◽  
Chung-Nga Ko ◽  
Dan Li ◽  
Chao Yang ◽  
Wanhe Wang ◽  
...  

AbstractImpaired wound healing and ulcer complications are a leading cause of death in diabetic patients. In this study, we report the design and synthesis of a cyclometalated iridium(III) metal complex 1a as a stabilizer of hypoxia-inducible factor-1α (HIF-1α). In vitro biophysical and cellular analyses demonstrate that this compound binds to Von Hippel-Lindau (VHL) and inhibits the VHL–HIF-1α interaction. Furthermore, the compound accumulates HIF-1α levels in cellulo and activates HIF-1α mediated gene expression, including VEGF, GLUT1, and EPO. In in vivo mouse models, the compound significantly accelerates wound closure in both normal and diabetic mice, with a greater effect being observed in the diabetic group. We also demonstrate that HIF-1α driven genes related to wound healing (i.e. HSP-90, VEGFR-1, SDF-1, SCF, and Tie-2) are increased in the wound tissue of 1a-treated diabetic mice (including, db/db, HFD/STZ and STZ models). Our study demonstrates a small molecule stabilizer of HIF-1α as a promising therapeutic agent for wound healing, and, more importantly, validates the feasibility of treating diabetic wounds by blocking the VHL and HIF-1α interaction.


2018 ◽  
Author(s):  
Sang-Min Oh ◽  
Jin-Su Shin ◽  
Il-Koo Kim ◽  
Jae-Seung Moon ◽  
Jung-Ho Kim ◽  
...  

AbstractPatients with uncontrolled diabetes are susceptible to implant failure due to impaired bone metabolism. Hypoxia-Inducible Factor 1α (HIF-1α), a transcription factor that is up-regulated in response to reduced oxygen condition during the bone repair process after fracture or osteotomy, is known to mediate angiogenesis and osteogenesis. However, its function is inhibited under hyperglycemic conditions in diabetic patients. The aim of this study is to evaluate the effects of exogenous HIF-1α on bone formation around implants by applying HIF-1α to diabetic mice via a novel PTD-mediated DNA delivery system. Smooth surface implants (1mm in diameter; 2mm in length) were placed in the both femurs of diabetic and normal mice. HIF-1α and placebo gels were injected to implant sites of the right and left femurs, respectively: Normal mouse with HIF-1α gel (NH), Normal mouse with placebo gel (NP), Diabetic mouse with HIF-1α gel (DH), and Diabetic mouse with placebo gel (DP). RNA sequencing was performed 4 days after surgery. Based on RNA sequencing, Differentially Expressed Genes (DEGs) were identified and HIF-1α target genes were selected. Histologic and histomorphometric results were evaluated 2 weeks after the surgery. The results showed that bone-to-implant contact (BIC) and bone volume (BV) were significantly greater in the DH group than the DP group (p < 0.05). A total of 216 genes were differentially expressed in DH group compared to DP group. On the other hand, there were 95 DEGs in the case of normal mice. Twenty-one target genes of HIF-1α were identified in diabetic mice through bioinformatic analysis of DEGs. Among the target genes, NOS2, GPNMB, CCL2, CCL5, CXCL16 and TRIM63 were manually found to be associated with wound healing-related genes. In conclusion, local administration of HIF-1α via PTD may help bone formation around the implant and induce gene expression more favorable to bone formation in diabetic mice.


2021 ◽  
Author(s):  
Lu Lin ◽  
Lishan Huang ◽  
Lijing Wang ◽  
Yubin Wu ◽  
Zhou Chen ◽  
...  

Abstract Background: Severe hypoglycemia can cause cognitive impairment in diabetic patients, but the underlying molecular mechanism remains unclear.Objective: To assess the effect of severe hypoglycemia on cognitive function in diabetic mice to clarify the relationship between the mechanism and dysfunction of pericytes and the blood–brain barrier (BBB).Method: We established type 1 diabetes mellitus in 80 male C57BL/6J mice by intraperitoneal injection of streptozotocin (180 mg/kg). Further abdominal injection of short-acting insulin induced severe hypoglycemia. The mice were divided into normal, diabetes, and diabetic + severe hypoglycemia groups, and their blood glucose and general weight index were examined. Pericyte and BBB morphology and function were detected by histological and western blot analyses, BBB permeability was detected by Evans blue staining, and cognitive function was detected with the Morris water maze.Results: Severe hypoglycemia aggravated the histological damage, BBB damage, brain edema, and pericyte loss in the diabetic mice. It also reduced the expression of the BBB tight junction proteins occludin and claudin-5, the expression of the pericyte-specific markers PDGFR-β (platelet-derived growth factor receptor-β) and α-SMA, and increased the expression of the inflammatory factor MMP9. At the same time, diabetic mice with severe hypoglycemia had significantly reduced cognitive function.Conclusion: Severe hypoglycemia leads to cognitive dysfunction in diabetic mice, and its possible mechanism is related to pericyte dysfunction and BBB destruction.


2020 ◽  
Author(s):  
Koichiro Kajiwara ◽  
Yoshihiko Sawa ◽  
Takahiro Fujita ◽  
Sachio Tamaoki

Abstract Background We recently reported that the glomerular endothelium expresses toll-like receptor (TLR)2 and TLR4 in diabetic environments and established that the TLR2 ligand Porphyromonas (P.) gingivalis lipopolysaccharides (LPS) induces nephropathy in diabetic mice. It is thought that P. gingivalis LPS promotes the chronic inflammation with the overexpression of leukocyte adhesion molecules and renal-specific metabolic enzymes by the recognition of P. gingivalis LPS via TLR in the diabetic kidneys. The present study aims to examine the expression of leukocyte adhesion molecules and renal metabolic factors in mouse kidneys with periodontal pathogen P. gingivalis LPS-induced diabetic nephropathy that was recently established. Methods The immunohistochemical investigation was performed on mouse kidney with P. gingivalis LPS-induced diabetic nephropathy model with glomerulosclerosis in glomeruli. Results There were no vessels which expressed vascular cell adhesion molecule-1 (VCAM-1), E-selectin, or fibroblast growth factor (FGF) 23 in diabetic mice, or in healthy mice administered P. gingivalis LPS. However, in diabetic mouse kidneys with P. gingivalis LPS-induced nephropathy the expression of VCAM-1 and the accumulation of FGF23 were established in renal tubules and glomeruli, and the expression of E-selectin was established in renal parenchyma and glomeruli. The angiotensin-converting enzyme 2 (ACE2) was detected in the proximal tubules but not in other regions including not in distal tubules of diabetic mice without LPS, and not in healthy mice administered P. gingivalis LPS. In diabetic mouse kidneys with P. gingivalis LPS-induced nephropathy ACE2 was detected both in renal tubules as well as in glomeruli. The macrophage-1 (Mac-1) and podoplanin-positive cells increased in the renal parenchyma with diabetic condition and there was accumulation in P. gingivalis LPS-induced diabetic nephropathy. As the expression of VCAM-1 and E-selectin is upregulated in glomeruli, tubules, and intertubular capillaries, it is thought that the inflammatory infiltration of the monocyte-macrophage lineage promoted in kidneys with P. gingivalis LPS-induced the diabetic nephropathy. Conclusions P. gingivalis LPS may progressively accelerate the development of the renal inflammatory environment in LPS-accumulated glomeruli with the macrophage infiltration via the renal expression of VCAM-1 and E-selectin, and with ACE2 overexpression and FGF23 accumulation. Periodontitis may be a critical factor in the progress of nephropathy in diabetic patients.


2005 ◽  
Vol 73 (9) ◽  
pp. 6055-6063 ◽  
Author(s):  
Matthew D. Mastropaolo ◽  
Nicholas P. Evans ◽  
Meghan K. Byrnes ◽  
Ann M. Stevens ◽  
John L. Robertson ◽  
...  

ABSTRACT Human diabetics frequently suffer delayed wound healing, increased susceptibility to localized and systemic infections, and limb amputations as a consequence of the disease. Lower-limb infections in diabetic patients are most often polymicrobial, involving mixtures of aerobic, facultative anaerobic, and anaerobic bacteria. The purpose of this study is to determine if these organisms contribute to synergy in polymicrobial infections by using diabetic mice as an in vivo model. The model was the obese diabetic mouse strain BKS.Cg-m +/+ Lepr db /J, a model of human type 2 diabetes. Young (5- to 6-week-old) prediabetic mice and aged (23- to 24-week-old) diabetic mice were compared. The mice were injected subcutaneously with mixed cultures containing Escherichia coli, Bacteroides fragilis, and Clostridium perfringens. Progression of the infection (usually abscess formation) was monitored by examining mice for bacterial populations and numbers of white blood cells at 1, 8, and 22 days postinfection. Synergy in the mixed infections was defined as a statistically significant increase in the number of bacteria at the site of injection when coinfected with a second bacterium, compared to when the bacterium was inoculated alone. E. coli provided strong synergy to B. fragilis but not to C. perfringens. C. perfringens and B. fragilis provided moderate synergy to each other but only in young mice. B. fragilis was anergistic (antagonistic) to E. coli in coinfections in young mice at 22 days postinfection. When age-matched nondiabetic mice (C57BLKS/J) were used as controls, the diabetic mice exhibited 5 to 35 times the number of CFU as did the nondiabetic mice, indicating that diabetes was a significant factor in the severity of the polymicrobial infections.


2021 ◽  
Vol 28 ◽  
Author(s):  
Olga Simó-Servat ◽  
Hugo Ramos ◽  
Patricia Bogdanov ◽  
Marta García-Ramírez ◽  
Jordi Huerta ◽  
...  

Background: Ezrin, radixin, and moesin (the ERM complex) interact directly with membrane proteins regulating their attachment to actin filaments. ERM protein activation modifies cytoskeleton organization and alters the endothelial barrier function, thus favoring vascular leakage. However, little is known regarding the role of ERM proteins in diabetic retinopathy (DR). Objective: This study aimed to examine whether overexpression of the ERM complex exists in db/db mice and its main regulating factors. Methods: 9 male db/db mice and 9 male db/+ aged 14 weeks were analyzed. ERM proteins were assessed by western blot and by immunohistochemistry. Vascular leakage was determined by the Evans blue method. To assess ERM regulation, HRECs were cultured in a medium containing 5.5 mM D-glucose (mimicking physiological conditions) and 25 mM D-glucose (mimicking hyperglycemia that occurs in diabetic patients). Moreover, treatment with TNF-α, IL-1β, or VEGF was added to a high glucose condition. The expression of ERM proteins was quantified by RT-PCR. Cell permeability was evaluated by measuring movements of FITC-dextran. Results: A significant increase of ERM in diabetic mice in comparison with non-diabetic mice was observed. A high glucose condition alone did not have any effect on ERM expression. However, TNF-α and IL-1β induced a significant increase in ERM proteins. Conclusion: The increase of ERM proteins induced by diabetes could be one of the mechanisms involved in vascular leakage and could be considered as a therapeutic target. Moreover, the upregulation of the ERM complex by diabetes is induced by inflammatory mediators rather than by high glucose itself.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 159 ◽  
Author(s):  
Kyung-Ah Park ◽  
Zhen Jin ◽  
Jong Youl Lee ◽  
Hyeong Seok An ◽  
Eun Bee Choi ◽  
...  

Glucagon-like peptide 1 (GLP-1) mimetics have been approved as an adjunct therapy for glycemic control in type 2 diabetic patients for the increased insulin secretion under hyperglycemic conditions. Recently, it is reported that such agents elicit neuroprotective effects against diabetes-associated cognitive decline. However, there is an issue of poor compliance by multiple daily subcutaneous injections for sufficient glycemic control due to their short duration, and neuroprotective actions were not fully studied, yet. In this study, using the prepared exendin-4 fusion protein agent, we investigated the pharmacokinetic profile and the role of this GLP-1 mimetics on memory deficits in a high-fat diet (HFD)/streptozotocin (STZ) mouse model of type 2 diabetic mellitus. After induction of diabetes, mice were administered weekly by intraperitoneal injection of GLP-1 mimetics for 6 weeks. This treatment reversed HFD/STZ-induced metabolic symptoms of increased body weight, hyperglycemia, and hepatic steatosis. Furthermore, the impaired cognitive performance of diabetic mice was significantly reversed by GLP-1 mimetics. GLP-1 mimetic treatment also reversed decreases in GLP-1/GLP-1 receptor expression levels in both the pancreas and hippocampus of diabetic mice; increases in hippocampal inflammation, mitochondrial fission, and calcium-binding protein levels were also reversed. These findings suggest that GLP-1 mimetics are promising agents for both diabetes and neurodegenerative diseases that are associated with increased GLP-1 expression in the brain.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
José María Mora-Gutiérrez ◽  
José Antonio Rodríguez ◽  
María A. Fernández-Seara ◽  
Josune Orbe ◽  
Francisco Javier Escalada ◽  
...  

AbstractMatrix metalloproteinases have been implicated in diabetic microvascular complications. However, little is known about the pathophysiological links between MMP-10 and the renin-angiotensin system (RAS) in diabetic kidney disease (DKD). We tested the hypothesis that MMP-10 may be up-regulated in early stage DKD, and could be down-regulated by angiotensin II receptor blockade (telmisartan). Serum MMP-10 and TIMP-1 levels were measured in 268 type 2 diabetic subjects and 111 controls. Furthermore, histological and molecular analyses were performed to evaluate the renal expression of Mmp10 and Timp1 in a murine model of early type 2 DKD (db/db) after telmisartan treatment. MMP-10 (473 ± 274 pg/ml vs. 332 ± 151; p = 0.02) and TIMP-1 (573 ± 296 ng/ml vs. 375 ± 317; p < 0.001) levels were significantly increased in diabetic patients as compared to controls. An early increase in MMP-10 and TIMP-1 was observed and a further progressive elevation was found as DKD progressed to end-stage renal disease. Diabetic mice had 4-fold greater glomerular Mmp10 expression and significant albuminuria compared to wild-type, which was prevented by telmisartan. MMP-10 and TIMP-1 are increased from the early stages of type 2 diabetes. Prevention of MMP-10 upregulation observed in diabetic mice could be another protective mechanism of RAS blockade in DKD.


Sign in / Sign up

Export Citation Format

Share Document