scholarly journals Various effects of hepatoma-derived growth factor on cell growth, migration and invasion of breast cancer and prostate cancer cells

Author(s):  
Chongfeng Gao
Author(s):  
Denisa Baci ◽  
Antonino Bruno ◽  
Caterina Cascini ◽  
Matteo Gallazzi ◽  
Lorenzo Mortara ◽  
...  

Abstract Background Prostate cancer (PCa) is a leading cause of cancer-related death in males worldwide. Exacerbated inflammation and angiogenesis have been largely demonstrated to contribute to PCa progression. Diverse naturally occurring compounds and dietary supplements are endowed with anti-oxidant, anti-inflammatory and anti-angiogenic activities, representing valid compounds to target the aberrant cytokine/chemokine production governing PCa progression and angiogenesis, in a chemopreventive setting. Using mass spectrometry analysis on serum samples of prostate cancer patients, we have previously found higher levels of carnitines in non-cancer individuals, suggesting a protective role. Here we investigated the ability of Acetyl-L-carnitine (ALCAR) to interfere with key functional properties of prostate cancer progression and angiogenesis in vitro and in vivo and identified target molecules modulated by ALCAR. Methods The chemopreventive/angiopreventive activities ALCAR were investigated in vitro on four different prostate cancer (PCa) cell lines (PC-3, DU-145, LNCaP, 22Rv1) and a benign prostatic hyperplasia (BPH) cell line. The effects of ALCAR on the induction of apoptosis and cell cycle arrest were investigated by flow cytometry (FC). Functional analysis of cell adhesion, migration and invasion (Boyden chambers) were performed. ALCAR modulation of surface antigen receptor (chemokines) and intracellular cytokine production was assessed by FC. The release of pro-angiogenic factors was detected by a multiplex immunoassay. The effects of ALCAR on PCa cell growth in vivo was investigated using tumour xenografts. Results We found that ALCAR reduces cell proliferation, induces apoptosis, hinders the production of pro inflammatory cytokines (TNF-α and IFN-γ) and of chemokines CCL2, CXCL12 and receptor CXCR4 involved in the chemotactic axis and impairs the adhesion, migration and invasion capabilities of PCa and BPH cells in vitro. ALCAR exerts angiopreventive activities on PCa by reducing production/release of pro angiogenic factors (VEGF, CXCL8, CCL2, angiogenin) and metalloprotease MMP-9. Exposure of endothelial cells to conditioned media from PCa cells, pre-treated with ALCAR, inhibited the expression of CXCR4, CXCR1, CXCR2 and CCR2 compared to those from untreated cells. Oral administration (drinking water) of ALCAR to mice xenografted with two different PCa cell lines, resulted in reduced tumour cell growth in vivo. Conclusions Our results highlight the capability of ALCAR to down-modulate growth, adhesion, migration and invasion of prostate cancer cells, by reducing the production of several crucial chemokines, cytokines and MMP9. ALCAR is a widely diffused dietary supplements and our findings provide a rational for studying ALCAR as a possible molecule for chemoprevention approaches in subjects at high risk to develop prostate cancer. We propose ALCAR as a new possible “repurposed agent’ for cancer prevention and interception, similar to aspirin, metformin or beta-blockers.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2682
Author(s):  
Keshav Karki ◽  
Kumaravel Mohankumar ◽  
Abigail Schoeller ◽  
Gregory Martin ◽  
Rupesh Shrestha ◽  
...  

Nuclear receptor 4A1 (NR4A1, Nur77, TR3) is more highly expressed in breast and solid tumors compared to non-tumor tissues and is a pro-oncogenic factor in solid tumor-derived cancers. NR4A1 regulates cancer cell growth, survival, migration, and invasion, and bis-indole-derived compounds (CDIMs) that bind NR4A1 act as antagonists and inhibit tumor growth. Preliminary structure-binding studies identified 1,1-bis(3′-indolyl)-1-(3,5-disubstitutedphenyl)methane analogs as NR4A1 ligands with low KD values; we further investigated the anticancer activity of the four most active analogs (KD’s ≤ 3.1 µM) in breast cancer cells and in athymic mouse xenograft models. The treatment of MDA-MB-231 and SKBR3 breast cancer cells with the 3-bromo-5-methoxy, 3-chloro-5-trifluoromethoxy, 3-chloro-5-trifluoromethyl, and 3-bromo-5-trifluoromethoxy phenyl-substituted analogs decreased cell growth and the expression of epidermal of growth factor receptor (EGFR), hepatocyte growth factor receptor (cMET), and PD-L1 as well as inhibited mTOR phosphorylation. In addition, all four compounds inhibited tumor growth in athymic nude mice bearing MDA-MB-231 cells (orthotopic) at a dose of 1 mg/kg/d, which was not accompanied by changes in body weight. These 3,5-disubstituted analogs were the most potent CDIM/NR4A1 ligands reported and are being further developed for clinical applications.


2019 ◽  
Vol 20 (7) ◽  
pp. 1647 ◽  
Author(s):  
Chia-Cheng Su ◽  
Kun-Lin Hsieh ◽  
Po-Len Liu ◽  
Hsin-Chih Yeh ◽  
Shu-Pin Huang ◽  
...  

Current clinical challenges of prostate cancer management are to restrict tumor growth and prohibit metastasis. AICAR (5-aminoimidazole-4-carbox-amide-1-β-d-ribofuranoside), an AMP-activated protein kinase (AMPK) agonist, has demonstrated antitumor activities for several types of cancers. However, the activity of AICAR on the cell growth and metastasis of prostate cancer has not been extensively studied. Herein we examine the effects of AICAR on the cell growth and metastasis of prostate cancer cells. Cell growth was performed by MTT assay and soft agar assay; cell apoptosis was examined by Annexin V/propidium iodide (PI) staining and poly ADP ribose polymerase (PARP) cleavage western blot, while cell migration and invasion were evaluated by wound-healing assay and transwell assay respectively. Epithelial–mesenchymal transition (EMT)-related protein expression and AMPK/mTOR-dependent signaling axis were analyzed by western blot. In addition, we also tested the effect of AICAR on the chemosensitivity to docetaxel using MTT assay. Our results indicated that AICAR inhibits cell growth in prostate cancer cells, but not in non-cancerous prostate cells. In addition, our results demonstrated that AICAR induces apoptosis, attenuates transforming growth factor (TGF)-β-induced cell migration, invasion and EMT-related protein expression, and enhances the chemosensitivity to docetaxel in prostate cancer cells through regulating the AMPK/mTOR-dependent pathway. These findings support AICAR as a potential therapeutic agent for the treatment of prostate cancer.


2004 ◽  
Vol 11 (4) ◽  
pp. 793-814 ◽  
Author(s):  
H E Jones ◽  
L Goddard ◽  
J M W Gee ◽  
S Hiscox ◽  
M Rubini ◽  
...  

De novo and acquired resistance to the anti-tumour drug gefitinib (ZD1839; Iressa), a specific epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) has been reported. We have determined whether signalling through the IGF-I receptor (IGF-1R) pathway plays a role in the gefitinib-acquired resistance phenotype. Continuous exposure of EGFR-positive MCF-7-derived tamoxifen resistant breast cancer cells (TAM-R) to 1 μM gefitinib resulted in a sustained growth inhibition (90%) for 4 months before the surviving cells resumed proliferation. A stable gefitinib-resistant subline (TAM/TKI-R) was established after a further 2 months and this showed no detectable basal phosphorylated EGFR activity. Compared with the parental TAM-R cells, the TAM/ TKI-R cells demonstrated (a) elevated levels of activated IGF-1R, AKT and protein kinase C (PKC)δ, (b) an increased sensitivity to growth inhibition by the IGF-1R TKI AG1024 and (c) an increased migratory capacity that was reduced by AG1024 treatment. Similarly, the EGFR-positive androgen-independent human prostate cancer cell line DU145 was also continuously challenged with 1 μM gefitinib and, although substantial growth inhibition (60%) was seen initially, a gefitinib-resistant variant (DU145/TKI-R) developed after 3 months. Like their breast cancer counterparts, the DU145/TKI-R cells showed increases in the levels of components of the IGF-1R signalling pathway and an elevated sensitivity to growth inhibition by AG1024 compared with the parent DU145 cell line. Additionally, DU145/TKI-R cell migration was also decreased by this inhibitor. We have therefore concluded that in breast and prostate cancer cells acquired resistance to gefitinib is associated with increased signalling via the IGF-1R pathway, which also plays a role in the invasive capacity of the gefitinib-resistant phenotype.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kristen A. Marcellus ◽  
Tara E. Crawford Parks ◽  
Shekoufeh Almasi ◽  
Bernard J. Jasmin

Abstract Background Prostate cancer is one of the most common malignant cancers with the second highest global rate of mortality in men. During the early stages of disease progression, tumour growth is local and androgen-dependent. Despite treatment, a large percentage of patients develop androgen-independent prostate cancer, which often results in metastases, a leading cause of mortality in these patients. Our previous work on the RNA-binding protein Staufen1 demonstrated its novel role in cancer biology, and in particular rhabdomyosarcoma tumorigenesis. To build upon this work, we have focused on the role of Staufen1 in other forms of cancer and describe here the novel and differential roles of Staufen1 in prostate cancer. Methods Using a cell-based approach, three independent prostate cancer cell lines with different characteristics were used to evaluate the expression of Staufen1 in human prostate cancer relative to control prostate cells. The functional impact of Staufen1 on several key oncogenic features of prostate cancer cells including proliferation, apoptosis, migration and invasion were systematically investigated. Results We show that Staufen1 levels are increased in all human prostate cancer cells examined in comparison to normal prostate epithelial cells. Furthermore, Staufen1 differentially regulates growth, migration, and invasion in the various prostate cancer cells assessed. In LNCaP prostate cancer cells, Staufen1 regulates cell proliferation through mTOR activation. Conversely, Staufen1 regulates migration and invasion of the highly invasive, bone metastatic-derived, PC3 prostate cells via the activation of focal adhesion kinase. Conclusions Collectively, these results show that Staufen1 has a direct impact in prostate cancer development and further demonstrate that its functions vary amongst the prostate cancer cell types. Accordingly, Staufen1 represents a novel target for the development of much-needed therapeutic strategies for prostate cancer.


Sign in / Sign up

Export Citation Format

Share Document