scholarly journals Recombinant adenovirus of SEA and CD80 genes driven by MMRE and mouse TERT promoter induce effective antitumor immune responses against different types of tumor cells in vitro and in vivo

2017 ◽  
Vol 37 (5) ◽  
pp. 3037-3045
Author(s):  
Shao-Yan Si ◽  
Jun-Li Liu ◽  
Jun-Lian Liu ◽  
Bing-Xin Xu ◽  
Jian-Zhong Li ◽  
...  
1998 ◽  
Vol 6 (3-4) ◽  
pp. 331-342 ◽  
Author(s):  
Christoph Specht ◽  
Hans-Gerd Pauels ◽  
Christian Becker ◽  
Eckehart Kölsch

The involvement of counteractiveCD8+T-cell subsets during tumor-specific immune responses was analyzed in a syngeneic murine plasmacytoma model.CD8+Tc cells against the immunogenic IL-10-producing BALB/c plasmacytoma ADJ-PC-5 can be easily induced by immunization of BALB/c mice with X-irradiated ADJ-PC-5 tumor cellsin vivoandin vitro. However, the failure of recipient mice to mount a protective Tc response against the tumor during early stages of a real or simulated tumor growth is not due to immunological ignorance, but depends on the induction of tumor-specific tolerance, involving a population of tumorinducedCD8+T cells that are able to inhibit the generation of tumor-specific Tc cells in a primary ADJ-PC-5-specific MLTC, using IFN-γas a suppressive factor. Whereas most longterm cultivated CD8+ADJ-PC-5-specific Tc lines produce type-1 cytokines on stimulation, at least two of them, which were derived from a primary MLTC, display a type-2 cytokine spectrum. Furthermore, the primaryin vitroTc response against ADJ-PC-5 cells shows characteristics of a Tc2 response. The Tc response is strictly depending on tumor-derived IL-10.CD8+Tc cells that are induced in a primary MLTC do not produce IFN-γ, and the tumor-specific Tc response is enhanced by IL-4 but suppressed by IFN-γor IL-12. In contrast, ADJ-PC- 5-specificCD8+Tc cells from immunized mice are IFN-γproducing Tc1 cells. Since the primaryin vitroTc response against the tumor is suppressed even by the smallest numbers of irradiated ADJ-PC-5-specific Tc1 cells via IFN-γthese Tc1 cells behave similar to the suppressiveCD8+T cells that are induced during early stages of ADJ-PC-5 tumorigenesis.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1709-1709
Author(s):  
Eva Alvarez ◽  
Esther Moga ◽  
Jorge Sierra ◽  
Javier Briones

Abstract Dendritic cells (DCs) are the main antigen presenting cells and play a pivotal role in the stimulation of T-cell immune responses. DCs cultured in the presence of a single tumor antigen can elicit an immune response against tumor cells expressing that antigen. However, simultaneous use of several tumor antigens may be advantageous since polyclonal activation of T cells against different tumor antigens may be a better approach to eradicate tumor cells. In this sense, fusions of dendritic and tumor cells (FCs) show a broad spectrum of tumor antigens, both known and unidentified, to be presented by class I and II MHC. Although prophylactic vaccines were successful in murine models, the results in the therapeutic setting have been unsatisfactory. We hypothesised that enhancing costimulation of FCs would help to break tumor tolerance once the tumor is established. To this purpose, we transduced FCs with a recombinant adenovirus encoding CD40L (AdvCD40L or AdvGFP as control) and we studied the therapeutic antitumoral effect of the administration of FC-CD40L in a murine model of myeloma. DCs obtained from day 7-bone marrow cultures of Balb/c mice were fused with tumor cells, a syngeneic murine myeloma cell line (4TOO). FCs hybrids were generated with PEG and selected after culturing in HAT medium plus GM-CSF for 7 days. FC were quantified by determining the percentage of cells that coexpress specific DC (CD11c) and tumor markers (CD138). Mean fusion efficiency was 30% (20–40%) and FCs expressed moderate levels of CD80, CD83, CD86, CD54, CD40 and MHC II and did not express CD40L. FC-CD40L showed a significant increase of expression of costimulatory molecules (CD80, CD86, CD54, and MHC II) compared to FC-GFP (p=0.011). Moreover, in a syngeneic mixed lymphocyte reaction, FC-CD40L induced a two-fold higher T-cell proliferation than FC-GFP or FC alone. In addition, FC-CD40L had improved migration to lymphoid tissues, preferentially to spleen, in comparison with FC-GFP (2.8% versus 1.6%). The antitumor effect of FC-CD40L was analyzed in vivo. Mice (n=10 per group) were injected i.v. with 2.5×105 tumor cells and treated with irradiated FC, FC-GFP or FC-CD40L (1×106 cells each) on days 2, 6 and 10 after tumor challenge. 40% of mice treated with FC-CD40L had long-term survival (>120 days). In contrast, all of mice treated with FC or FC-GFP died between days 25 and 35 (p=0.012). In parallel, treatment with mixed cells (not fused DC+ tumor cells), mix transduced with AdvGFP, or mix transduced with AdvCD40L did not provide any significant antitumor effect. We conclude that FCs transduced with AdvCD40L better stimulate in vitro and in vivo immune responses than FC alone and may provide a new strategy for treating patients with multiple myeloma or lymphoma.


2017 ◽  
Vol 63 (2) ◽  
pp. 48-58 ◽  
Author(s):  
Justyna Staniszewska ◽  
Marcin Szymański ◽  
Ewa Ignatowicz

SummaryThe article presents the antitumor and immunomodulatory activity of compounds and extracts fromInonotus obliquus.Polysaccharides isolated from sclerotium have a direct antitumor effect due to protein synthesis inhibition in tumor cells. Polysaccharides derived from the mycelium function by activating the immune system. Due to the limited toxicity of these substances, both extracts as well as isolated and purified chemicals may be a good alternative to current chemotherapy and play a role in cancer prevention.In vitroexperiments have shown the inhibition of inflammation with the influence of action ofI. obliquusextracts; however,in vivoexperiments on animals implanted with tumor cells of different types have shown the activation of the host immune system. This led to decrease in tumor mass and prolonged survival. The immunomodulatory mechanism of action is complex and it seems that stimulation of macrophages and induction of apoptosis in cancer cells is of great importance.


Neurosurgery ◽  
1992 ◽  
Vol 30 (4) ◽  
pp. 499-505 ◽  
Author(s):  
Frank P. Holladay ◽  
Grisel Lopez ◽  
Mamata De ◽  
Robert A. Morantz ◽  
Gary W. Wood

Neurosurgery ◽  
1992 ◽  
Vol 30 (4) ◽  
pp. 499-505 ◽  
Author(s):  
Frank P. Holladay ◽  
Grisel Lopez ◽  
Mamata De ◽  
Robert A. Morantz ◽  
Gary W. Wood

2019 ◽  
Vol 25 (13) ◽  
pp. 1477-1489 ◽  
Author(s):  
Valeria De Matteis ◽  
Mariafrancesca Cascione ◽  
Chiara C. Toma ◽  
Rosaria Rinaldi

The current strategies to treat different kinds of cancer are mainly based on chemotherapy, surgery and radiation therapy. Unfortunately, these approaches are not specific and rather invasive as well. In this scenario, metal nano-shells, in particular gold-based nanoshells, offer interesting perspectives in the effort to counteract tumor cells, due to their unique ability to tune Surface Plasmon Resonance in different light-absorbing ranges. In particular, the Visible and Near Infrared Regions of the electromagnetic spectrum are able to penetrate through tissues. In this way, the light absorbed by the gold nanoshell at a specific wavelength is converted into heat, inducing photothermal ablation in treated cancer cells. Furthermore, inert gold shells can be easily functionalized with different types of molecules in order to bind cellular targets in a selective manner. This review summarizes the current state-of-art of nanosystems embodying gold shells, regarding methods of synthesis, bio-conjugations, bio-distribution, imaging and photothermal effects (in vitro and in vivo), providing new insights for the development of multifunctional antitumor drugs.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Xin Yong ◽  
Yü-Feng Xiao ◽  
Gang Luo ◽  
Bin He ◽  
Mu-Han Lü ◽  
...  

Vaccine-induced cytotoxic T lymphocytes (CTLs) play a critical role in adaptive immunity against cancers. An important goal of current vaccine research is to induce durable and long-lasting functional CTLs that can mediate cytotoxic effects on tumor cells. To attain this goal, there are four distinct steps that must be achieved. To initiate a vaccine-induced CTL antitumor immune response, dendritic cells (DCs) must capture antigens derived from exogenous tumor vaccines in vivo or autologous DCs directly loaded in vitro with tumor antigens must be injected. Next, tumor-antigen-loaded DCs must activate CTLs in lymphoid organs. Subsequently, activated CTLs must enter the tumor microenvironment to perform their functions, at which point a variety of negative regulatory signals suppress the immune response. Finally, CTL-mediated cytotoxic effects must overcome the tolerance induced by tumor cells. Each step is a complex process that may be impeded in many ways. However, if these steps happen under appropriate regulation, the vaccine-induced CTL antitumor immune response will be more successful. For this reason, we should gain a better understanding of the basic mechanisms that govern the immune response. This paper, based on the steps necessary to induce an immune response, discusses current strategies for enhancing vaccine-induced CTL antitumor immune responses.


2001 ◽  
Vol 75 (18) ◽  
pp. 8733-8741 ◽  
Author(s):  
Ken N. Wills ◽  
Isabella A. Atencio ◽  
Jenny B. Avanzini ◽  
Saskia Neuteboom ◽  
Anne Phelan ◽  
...  

ABSTRACT In vitro experiments have demonstrated intercellular trafficking of the VP22 tegument protein of herpes simplex virus type 1 from infected cells to neighboring cells, which internalize VP22 and transport it to the nucleus. VP22 also can mediate intercellular transport of fusion proteins, providing a strategy for increasing the distribution of therapeutic proteins in gene therapy. Intercellular trafficking of the p53 tumor suppressor protein was demonstrated in vitro using a plasmid expressing full-length p53 fused in-frame to full-length VP22. The p53-VP22 chimeric protein induced apoptosis both in transfected tumor cells and in neighboring cells, resulting in a widespread cytotoxic effect. To evaluate the anti-tumor activity of p53-VP22 in vivo, we constructed recombinant adenoviruses expressing either wild-type p53 (FTCB) or a p53-VP22 fusion protein (FVCB) and compared their effects in p53-resistant tumor cells. In vitro, treatment of tumor cells with FVCB resulted in enhanced p53-specific apoptosis compared to treatment with equivalent doses of FTCB. However, in normal cells there was no difference in the dose-related cytotoxicity of FVCB compared to that of FTCB. In vivo, treatment of established tumors with FVCB was more effective than equivalent doses of FTCB. The dose-response curve to FVCB was flatter than that to FTCB; maximal antitumor responses could be achieved using FVCB at doses 1 log lower than those obtained with FTCB. Increased antitumor efficacy was correlated with increased distribution of p53 protein in FVCB-treated tumors. This study is the first demonstration that VP22 can enhance the in vivo distribution of therapeutic proteins and improve efficacy in gene therapy.


2001 ◽  
Vol 75 (24) ◽  
pp. 11992-11998 ◽  
Author(s):  
Jiaren Sun ◽  
Francis Bodola ◽  
Xuegong Fan ◽  
Habib Irshad ◽  
Lynn Soong ◽  
...  

ABSTRACT Several hepatitis C virus (HCV) proteins have been shown in vitro to interact with host cellular components that are involved in immune regulation. However, there is a paucity of data supporting the relevance of these observations to the in vivo situation. To test the hypothesis that such an interaction suppresses immune responses, we studied a line of transgenic C57BL/6 mice that express the HCV core and envelope proteins in the liver. The potential effects of these proteins on the hepatic immune response were evaluated by challenging these mice with a hepatotropic adenovirus. Both transgenic and nontransgenic mice developed similar courses of infection and cleared the virus from the liver by 28 days postinfection. Both groups of mice mounted similar immunoglobulin G (IgG), IgG2a, interleukin-2, and tumor necrosis factor alpha responses against the virus. Additionally, BALB/c mice were able to clear infection with recombinant adenovirus that does or does not express the HCV core and envelope 1 proteins in the same manner. These data suggest that HCV core and envelope proteins do not inhibit the hepatic antiviral mechanisms in these murine experimental systems and thus favor a model in which HCV circumvents host responses through a mechanism that does not involve general suppression of intrahepatic immune responses.


Sign in / Sign up

Export Citation Format

Share Document