Engineered Gold Nanoshells Killing Tumor Cells: New Perspectives

2019 ◽  
Vol 25 (13) ◽  
pp. 1477-1489 ◽  
Author(s):  
Valeria De Matteis ◽  
Mariafrancesca Cascione ◽  
Chiara C. Toma ◽  
Rosaria Rinaldi

The current strategies to treat different kinds of cancer are mainly based on chemotherapy, surgery and radiation therapy. Unfortunately, these approaches are not specific and rather invasive as well. In this scenario, metal nano-shells, in particular gold-based nanoshells, offer interesting perspectives in the effort to counteract tumor cells, due to their unique ability to tune Surface Plasmon Resonance in different light-absorbing ranges. In particular, the Visible and Near Infrared Regions of the electromagnetic spectrum are able to penetrate through tissues. In this way, the light absorbed by the gold nanoshell at a specific wavelength is converted into heat, inducing photothermal ablation in treated cancer cells. Furthermore, inert gold shells can be easily functionalized with different types of molecules in order to bind cellular targets in a selective manner. This review summarizes the current state-of-art of nanosystems embodying gold shells, regarding methods of synthesis, bio-conjugations, bio-distribution, imaging and photothermal effects (in vitro and in vivo), providing new insights for the development of multifunctional antitumor drugs.

2017 ◽  
Vol 63 (2) ◽  
pp. 48-58 ◽  
Author(s):  
Justyna Staniszewska ◽  
Marcin Szymański ◽  
Ewa Ignatowicz

SummaryThe article presents the antitumor and immunomodulatory activity of compounds and extracts fromInonotus obliquus.Polysaccharides isolated from sclerotium have a direct antitumor effect due to protein synthesis inhibition in tumor cells. Polysaccharides derived from the mycelium function by activating the immune system. Due to the limited toxicity of these substances, both extracts as well as isolated and purified chemicals may be a good alternative to current chemotherapy and play a role in cancer prevention.In vitroexperiments have shown the inhibition of inflammation with the influence of action ofI. obliquusextracts; however,in vivoexperiments on animals implanted with tumor cells of different types have shown the activation of the host immune system. This led to decrease in tumor mass and prolonged survival. The immunomodulatory mechanism of action is complex and it seems that stimulation of macrophages and induction of apoptosis in cancer cells is of great importance.


2021 ◽  
Vol 9 (11) ◽  
pp. e003036
Author(s):  
Shunichi Taki ◽  
Kohei Matsuoka ◽  
Yuko Nishinaga ◽  
Kazuomi Takahashi ◽  
Hirotoshi Yasui ◽  
...  

BackgroundNear-infrared photoimmunotherapy (NIR-PIT) is a new modality for treating cancer, which uses antibody-photoabsorber (IRDye700DX) conjugates that specifically bind to target tumor cells. This conjugate is then photoactivated by NIR light, inducing rapid necrotic cell death. NIR-PIT needs a highly expressed targeting antigen on the cells because of its reliance on antibodies. However, using antibodies limits this useful technology to only those patients whose tumors express high levels of a specific antigen. Thus, to propose an alternative strategy, we modified this phototechnology to augment the anticancer immune system by targeting the almost low-expressed immune checkpoint molecules on tumor cells.MethodsWe used programmed death-ligand 1 (PD-L1), an immune checkpoint molecule, as the target for NIR-PIT. Although the expression of PD-L1 on tumor cells is usually low, PD-L1 is almost expressed on tumor cells. Intratumoral depletion with PD-L1-targeted NIR-PIT was tested in mouse syngeneic tumor models.ResultsAlthough PD-L1-targeted NIR-PIT showed limited effect on tumor cells in vitro, the therapy induced sufficient antitumor effects in vivo, which were thought to be mediated by the ‘photoimmuno’ effect and antitumor immunity augmentation. Moreover, PD-L1-targeted NIR-PIT induced antitumor effect on non-NIR light-irradiated tumors.ConclusionsLocal PD-L1-targeted NIR-PIT enhanced the antitumor immune reaction through a direct photonecrotic effect, thereby providing an alternative approach to targeted cancer immunotherapy and expanding the scope of cancer therapeutics.


2019 ◽  
Vol 2 (4) ◽  
pp. 83-98 ◽  
Author(s):  
André De Lima Mota ◽  
Bruna Vitorasso Jardim-Perassi ◽  
Tialfi Bergamin De Castro ◽  
Jucimara Colombo ◽  
Nathália Martins Sonehara ◽  
...  

Breast cancer is the most common cancer among women and has a high mortality rate. Adverse conditions in the tumor microenvironment, such as hypoxia and acidosis, may exert selective pressure on the tumor, selecting subpopulations of tumor cells with advantages for survival in this environment. In this context, therapeutic agents that can modify these conditions, and consequently the intratumoral heterogeneity need to be explored. Melatonin, in addition to its physiological effects, exhibits important anti-tumor actions which may associate with modification of hypoxia and Warburg effect. In this study, we have evaluated the action of melatonin on tumor growth and tumor metabolism by different markers of hypoxia and glucose metabolism (HIF-1α, glucose transporters GLUT1 and GLUT3 and carbonic anhydrases CA-IX and CA-XII) in triple negative breast cancer model. In an in vitro study, gene and protein expressions of these markers were evaluated by quantitative real-time PCR and immunocytochemistry, respectively. The effects of melatonin were also tested in a MDA-MB-231 xenograft animal model. Results showed that melatonin treatment reduced the viability of MDA-MB-231 cells and tumor growth in Balb/c nude mice (p <0.05). The treatment significantly decreased HIF-1α gene and protein expression concomitantly with the expression of GLUT1, GLUT3, CA-IX and CA-XII (p <0.05). These results strongly suggest that melatonin down-regulates HIF-1α expression and regulates glucose metabolism in breast tumor cells, therefore, controlling hypoxia and tumor progression. 


2019 ◽  
Vol 65 (5) ◽  
pp. 760-765
Author(s):  
Margarita Tyndyk ◽  
Irina Popovich ◽  
A. Malek ◽  
R. Samsonov ◽  
N. Germanov ◽  
...  

The paper presents the results of the research on the antitumor activity of a new drug - atomic clusters of silver (ACS), the colloidal solution of nanostructured silver bisilicate Ag6Si2O7 with particles size of 1-2 nm in deionized water. In vitro studies to evaluate the effect of various ACS concentrations in human tumor cells cultures (breast cancer, colon carcinoma and prostate cancer) were conducted. The highest antitumor activity of ACS was observed in dilutions from 2.7 mg/l to 5.1 mg/l, resulting in the death of tumor cells in all studied cell cultures. In vivo experiments on transplanted Ehrlich carcinoma model in mice consuming 0.75 mg/kg ACS with drinking water revealed significant inhibition of tumor growth since the 14th day of experiment (maximally by 52% on the 28th day, p < 0.05) in comparison with control. Subcutaneous injections of 2.5 mg/kg ACS inhibited Ehrlich's tumor growth on the 7th and 10th days of the experiment (p < 0.05) as compared to control.


Toxins ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 157 ◽  
Author(s):  
Adriana Tomoko Nishiya ◽  
Marcia Kazumi Nagamine ◽  
Ivone Izabel Mackowiak da Fonseca ◽  
Andrea Caringi Miraldo ◽  
Nayra Villar Scattone ◽  
...  

Canine oral mucosal melanomas (OMM) are the most common oral malignancy in dogs and few treatments are available. Thus, new treatment modalities are needed for this disease. Bacillus anthracis (anthrax) toxin has been reengineered to target tumor cells that express urokinase plasminogen activator (uPA) and metalloproteinases (MMP-2), and has shown antineoplastic effects both, in vitro and in vivo. This study aimed to evaluate the effects of a reengineered anthrax toxin on canine OMM. Five dogs bearing OMM without lung metastasis were included in the clinical study. Tumor tissue was analyzed by immunohistochemistry for expression of uPA, uPA receptor, MMP-2, MT1-MMP and TIMP-2. Animals received either three or six intratumoral injections of the reengineered anthrax toxin prior to surgical tumor excision. OMM samples from the five dogs were positive for all antibodies. After intratumoral treatment, all dogs showed stable disease according to the canine Response Evaluation Criteria in Solid Tumors (cRECIST), and tumors had decreased bleeding. Histopathology has shown necrosis of tumor cells and blood vessel walls after treatment. No significant systemic side effects were noted. In conclusion, the reengineered anthrax toxin exerted inhibitory effects when administered intratumorally, and systemic administration of this toxin is a promising therapy for canine OMM.


2021 ◽  
Vol 12 (3) ◽  
Author(s):  
Shuang Cui ◽  
Qiong Wu ◽  
Ming Liu ◽  
Mu Su ◽  
ShiYou Liu ◽  
...  

AbstractSuper-enhancers or stretch enhancers (SEs) consist of large clusters of active transcription enhancers which promote the expression of critical genes that define cell identity during development and disease. However, the role of many super-enhancers in tumor cells remains unclear. This study aims to explore the function and mechanism of a new super-enhancer in various tumor cells. A new super-enhancer that exists in a variety of tumors named EphA2-Super-enhancer (EphA2-SE) was found using multiple databases and further identified. CRISPR/Cas9-mediated deletion of EphA2-SE results in the significant downregulation of its target gene EphA2. Mechanistically, we revealed that the core active region of EphA2-SE comprises E1 component enhancer, which recruits TCF7L2 and FOSL2 transcription factors to drive the expression of EphA2, induce cell proliferation and metastasis. Bioinformatics analysis of RNA-seq data and functional experiments in vitro illustrated that EphA2-SE deletion inhibited cell growth and metastasis by blocking PI3K/AKT and Wnt/β-catenin pathway in HeLa, HCT-116 and MCF-7 cells. Overexpression of EphA2 in EphA2-SE−/− clones rescued the effect of EphA2-SE deletion on proliferation and metastasis. Subsequent xenograft animal model revealed that EphA2-SE deletion suppressed tumor proliferation and survival in vivo. Taken together, these findings demonstrate that EphA2-SE plays an oncogenic role and promotes tumor progression in various tumors by recruiting FOSL2 and TCF7L2 to drive the expression of oncogene EphA2.


Sign in / Sign up

Export Citation Format

Share Document