scholarly journals Exosomal miR‑663b exposed to TGF‑β1 promotes cervical cancer metastasis and epithelial‑mesenchymal transition by targeting MGAT3

2021 ◽  
Vol 45 (4) ◽  
Author(s):  
Xuewu You ◽  
Ying Wang ◽  
Jinyu Meng ◽  
Sai Han ◽  
Lu Liu ◽  
...  
2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Min Deng ◽  
Xiaodong Cai ◽  
Ling Long ◽  
Linying Xie ◽  
Hongmei Ma ◽  
...  

Abstract Background Accumulating evidence indicates that CD36 initiates metastasis and correlates with an unfavorable prognosis in cancers. However, there are few reports regarding the roles of CD36 in initiation and metastasis of cervical cancer. Methods Using immunohistochemistry, we analyzed 133 cervical cancer samples for CD36 protein expression levels, and then investigated the correlation between changes in its expression and clinicopathologic parameters. The effect of CD36 expression on the epithelial–mesenchymal transition (EMT) in cervical cancer cells was evaluated by Western immunoblotting analysis. In vitro invasion and in vivo metastasis assays were also used to evaluate the role of CD36 in cervical cancer metastasis. Results In the present study, we confirmed that CD36 was highly expressed in cervical cancer samples relative to normal cervical tissues. Moreover, overexpression of CD36 promoted invasiveness and metastasis of cervical cancer cells in vitro and in vivo, while CD36 knockdown suppressed proliferation, migration, and invasiveness. We demonstrated that TGF-β treatment attenuated E-cadherin expression and enhanced the expression levels of CD36, vimentin, slug, snail, and twist in si-SiHa, si-HeLa, and C33a–CD36 cells, suggesting that TGF-β synergized with CD36 on EMT via active CD36 expression. We also observed that the expression levels of TGF-β in si-SiHa cells and si-HeLa cells were down-regulated, whereas the expression levels of TGF-β were up-regulated in C33a–CD36 cells. These results imply that CD36 and TGF-β interact with each other to promote the EMT in cervical cancer. Conclusions Our findings suggest that CD36 is likely to be an effective target for guiding individualized clinical therapy of cervical cancer.


2009 ◽  
Vol 20 (13) ◽  
pp. 3115-3124 ◽  
Author(s):  
Masaki Mori ◽  
Hironori Nakagami ◽  
Nobutaka Koibuchi ◽  
Koichi Miura ◽  
Yoichi Takami ◽  
...  

Epithelial–mesenchymal transition (EMT) confers destabilization of cell–cell adhesion and cell motility required for morphogenesis or cancer metastasis. Here we report that zyxin, a focal adhesion-associated LIM protein, is essential for actin reorganization for cell migration in TGF-β1–induced EMT in normal murine mammary gland (NMuMG) cells. TGF-β1 induced the relocation of zyxin from focal adhesions to actin fibers. In addition, TGF-β1 up-regulated zyxin via a transcription factor, Twist1. Depletion of either zyxin or Twist1 abrogated the TGF-β1–dependent EMT, including enhanced cell motility and actin reorganization, indicating the TGF-β1-Twist1-zyxin signal for EMT. Both zyxin and Twist1 were predominantly expressed in the cardiac atrioventricular canal (AVC) that undergoes EMT during heart development. We further performed ex vivo AVC explant assay and revealed that zyxin was required for the reorganization of actin fibers and migration of the endocardial cells. Thus, zyxin reorganizes actin fibers and enhances cell motility in response to TGF-β1, thereby regulating EMT.


2021 ◽  
Author(s):  
Nalini Venkatesan ◽  
Ashley Xavier ◽  
Sindhu K.J. ◽  
Himanshu Sinha ◽  
Karunagaran Devarajan

The emergence of large-scale transcriptomic data provides the opportunity for identifying novel putative targets of microRNAs (miRNAs). In this study, we followed a computational pipeline to predict the candidate gene targets of the miR-34 family. This approach integrates the expressions of miR-34 with genes of heterogeneous primary cervical epithelial squamous cell carcinomas (CESC). Integration of miR-34b and epithelial-mesenchymal transition (EMT) regulated genes has also been focussed, EMT being a reversible process that fuels cancer metastasis. An in-silico approach involving three processes was carried out with CESC datasets of the cancer atlas genome (TCGA), which includes correlation analysis, target prediction database lookup, functional enrichment, network analysis, survival analysis, and EMT score derivation. The results indicate that the miR-34 family may regulate the candidate genes of the mTOR pathway, cell cycle (CCND2) and cell adhesion functions (FZD4). Further, the study reveals the possible regulation of EMT signature genes, namely BMP7, CAV1 and ID2by miR-34b. Further, these transcriptomic signatures were validated in a subset of CESC from the South Asian Indian population (n = 10) and in non-cancerous cervical tissues (n = 5). Upon stably expressing miR-34b in cervical cancer cells (C33A and HeLa), we found repression of these candidate genes and a low negative correlation (r2 = 0.07) between miR-34b and EMT score indicating FN1 as its putative target. Together, these studies revealed the potential targets of the miR-34 family, especially miR-34b, with the hope that they would emerge as potential biomarkers and/or promising therapeutic targets in CESC.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Jing Nan Lu ◽  
Won Sup Lee ◽  
Jeong Won Yun ◽  
Min Jeong Kim ◽  
Hye Jung Kim ◽  
...  

Recently we have demonstrated that anthocyanins from fruits ofVitis coignetiaePulliat (AIMs) have anticancer effects. Here, we investigate the effects of AIMs on cell proliferation and invasion as well as epithelial-mesenchymal transition (EMT) which have been linked to cancer metastasis in human uterine cervical cancer HeLa cells. AIMs inhibited the invasion of HeLa cells in a dose-dependent manner. AIMs inhibited MMP-9 expression in a dose-dependent manner. AIMs inhibited the motility of HeLa cells in a wound healing test. AIMs still suppressed NF-κB activation induced by TNF. AIMs also inhibited EMT in HeLa cells. AIMs suppressed vimentin, N-cadherin, andβ-catenin expression and induced E-cadherin. AIMs also suppressed expression ofβ-catenin and Snail, which was regulated by GSK-3. These effects of AIMs were also limited in the HeLa cells treated with TNF. In conclusion, this study indicates that AIMs have anticancer effects by suppressing NF-κB-regulated genes and EMT, which relates to suppression of IκBαphosphorylation and GSK-3 activity, respectively. However, the effects of AIMs were attenuated in the TNF-high condition.


2015 ◽  
Vol 10 (2) ◽  
pp. 985-989 ◽  
Author(s):  
XIAOQI HE ◽  
YING QIAN ◽  
HUILAN CAI ◽  
SHOUHUA YANG ◽  
JING CAI ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Tanchun Cheng ◽  
Shouguo Huang

Metastasis remains to be a huge challenge in cancer therapy. The mechanism underlying cervical cancer metastasis is not well understood and needs to be elucidated. Recent studies have highlighted the diverse roles of non-coding RNAs in cancer progression and metastasis. Increasing numbers of miRNAs, lncRNAs and circRNAs are found to be dysregulated in cervical cancer, associated with metastasis. They have been shown to regulate metastasis through regulating metastasis-related genes, epithelial-mesenchymal transition, signaling pathways and interactions with tumor microenvironment. Moreover, miRNAs can interact with lncRNAs and circRNAs respectively during this complex process. Herein, we review literatures up to date involving non-coding RNAs in cervical cancer metastasis, mainly focus on the underlying mechanisms and highlight the interaction network between miRNAs and lncRNAs, as well as circRNAs. Finally, we discuss the therapeutic prospects.


2015 ◽  
Vol 103 (6) ◽  
pp. 1606-1614.e2 ◽  
Author(s):  
Jing Ran ◽  
Dian-Liang Lin ◽  
Rong-Feng Wu ◽  
Qiong-Hua Chen ◽  
Hui-Ping Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document