scholarly journals Structural megadiversity in leaf litter predators - the head anatomy of Pselaphus heisei (Pselaphinae, Staphylinidae, Coleoptera)

2021 ◽  
Vol 79 ◽  
pp. 443-463
Author(s):  
Rolf Georg Beutel ◽  
Xiao-Zhu Luo ◽  
Margarita I. Yavorskaya ◽  
Paweł Jałoszyński

The head anatomy of Pselaphus heisei (Pselaphitae) is described and documented. The structural features are evaluated in comparison with findings presented in earlier studies on the subfamily, with a special focus on correlations with predacious habits and the groundplan of Pselaphinae. We found the tentorium, labrum, maxillary palps, shape of head, and a system of dorsal pits and sulci highly variable within the subfamily, reflecting multiple transformations, including many homoplasious changes. The following major characters are identified as groundplan features of Pselaphinae: falciform mandibles; small mola; semiglobular neck; ventrolateral antennal articulation; steep clypeal region; setiform labial palpomere 3; tentorium with nearly vertical main branches and lacking laminatentoria; separation of tentorial bridge from tentorial arms; fusion of dorsal tentorial arms with the head capsule; large brain placed in the posterior third of the head; and a triple cluster of well-developed cephalic glands. The last feature supports a hypothesis that multiple and independent cases of adaptations to myrmecophilous habits observed in various lineages of Pselaphinae were possible by re-programming already existing glands to produce appeasement secretions. The cephalic muscle apparatus of P. heisei is similar to what is found in other staphylinoid groups, with some exceptions, whereas it is strongly modified in the myrmecophile Claviger testaceus. We propose that the unparalleled structural megadiversity in Pselaphinae is primarily linked with life in the upper soil layers combined with specialized carnivorous habits, with small and agile or mechanically protected arthropods as prey. Within the group, various specialized life habits have evolved, including myrmecophily, termitophily, and also life in deep soil or caves, each with unique morphological adaptations.

2020 ◽  
Vol 148 (3) ◽  
pp. 255-269 ◽  
Author(s):  
Kyungjin Min ◽  
Asmeret Asefaw Berhe ◽  
Chau Minh Khoi ◽  
Hella van Asperen ◽  
Jeroen Gillabel ◽  
...  

2016 ◽  
Vol 20 (8) ◽  
pp. 3309-3323 ◽  
Author(s):  
Xuening Fang ◽  
Wenwu Zhao ◽  
Lixin Wang ◽  
Qiang Feng ◽  
Jingyi Ding ◽  
...  

Abstract. Soil moisture in deep soil layers is a relatively stable water resource for vegetation growth in the semi-arid Loess Plateau of China. Characterizing the variations in deep soil moisture and its influencing factors at a moderate watershed scale is important to ensure the sustainability of vegetation restoration efforts. In this study, we focus on analyzing the variations and factors that influence the deep soil moisture (DSM) in 80–500 cm soil layers based on a soil moisture survey of the Ansai watershed in Yan'an in Shanxi Province. Our results can be divided into four main findings. (1) At the watershed scale, higher variations in the DSM occurred at 120–140 and 480–500 cm in the vertical direction. At the comparable depths, the variation in the DSM under native vegetation was much lower than that in human-managed vegetation and introduced vegetation. (2) The DSM in native vegetation and human-managed vegetation was significantly higher than that in introduced vegetation, and different degrees of soil desiccation occurred under all the introduced vegetation types. Caragana korshinskii and black locust caused the most serious desiccation. (3) Taking the DSM conditions of native vegetation as a reference, the DSM in this watershed could be divided into three layers: (i) a rainfall transpiration layer (80–220 cm); (ii) a transition layer (220–400 cm); and (iii) a stable layer (400–500 cm). (4) The factors influencing DSM at the watershed scale varied with vegetation types. The main local controls of the DSM variations were the soil particle composition and mean annual rainfall; human agricultural management measures can alter the soil bulk density, which contributes to higher DSM in farmland and apple orchards. The plant growth conditions, planting density, and litter water holding capacity of introduced vegetation showed significant relationships with the DSM. The results of this study are of practical significance for vegetation restoration strategies, especially for the choice of vegetation types, planting zones, and proper human management measures.


2021 ◽  
Author(s):  
Sichu Wang ◽  
Oona Uhlgren ◽  
Anna-Reetta Salonen ◽  
Jussi Heinonsalo

<p>The coupled cycles and interactions of soil carbon (C), nitrogen (N), and phosphorus (P) are fundamental for soil quality and soil organic matter (SOM) formation. Low C:N ratios through nitrogenous fertilizer addition may accelerate SOM cycling and promote C mineralization in soil, whereas P limitations may decline C storage by reducing plant and microbial biomass production. Deeper soil layers’ C-N-P stoichiometry has an important role in regulating SOM formation in subsoils. However, there is little information on soil C:N:P stoichiometry in deep soil layers of farmland. In this study, soil columns up to one meter were collected from 32 farms distributing across Finland with different soil texture and agricultural management history. The one-meter soil columns were cut into 10 cm deep slices and analyzed for the total organic carbon (TOC), total nitrogen (TN) by dry combustion method and total phosphorus (TP) contents by aqua regia digestion and ICP-OES method. Overall, the TOC, TN and TP contents all dropped sharply in 30-40 cm soil layers, but TP contents rose again in deep soil. The role of agricultural management practice (including crop rotation, crop cover, crop diversity and fertilization) on soil C:N:P stoichiometry as well as organic matter accumulation in the deep soil layers were explored. The preliminary results will be presented in the poster. The data deepens our understanding of soil C, N and P coupling and interaction related to soil C sequestration.</p>


Insects ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 651
Author(s):  
Geoffrey M Attardo ◽  
Nicole Tam ◽  
Dula Parkinson ◽  
Lindsey K Mack ◽  
Xavier J Zahnle ◽  
...  

Tsetse flies (genus Glossina), the sole vectors of African trypanosomiasis, are distinct from most other insects, due to dramatic morphological and physiological adaptations required to support their unique biology. These adaptations are driven by demands associated with obligate hematophagy and viviparous reproduction. Obligate viviparity entails intrauterine larval development and the provision of maternal nutrients for the developing larvae. The reduced reproductive capacity/rate associated with this biology results in increased inter- and intra-sexual competition. Here, we use phase contrast microcomputed tomography (pcMicroCT) to analyze morphological adaptations associated with viviparous biology. These include (1) modifications facilitating abdominal distention required during blood feeding and pregnancy, (2) abdominal and uterine musculature adaptations for gestation and parturition of developed larvae, (3) reduced ovarian structure and capacity, (4) structural features of the male-derived spermatophore optimizing semen/sperm delivery and inhibition of insemination by competing males and (5) structural features of the milk gland facilitating nutrient incorporation and transfer into the uterus. Three-dimensional analysis of these features provides unprecedented opportunities for examination and discovery of internal morphological features not possible with traditional microscopy techniques and provides new opportunities for comparative morphological analyses over time and between species.


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 274
Author(s):  
Mengyu Ge ◽  
Baozhang Chen

Coal mining, as one of the key drivers of land degradation worldwide, caused land subsidence problems. In this study, we conducted experimental research to explore the reclaimed mine soil (RMS) water dynamics and its sources in relation to reclaimed land use types using stable water isotopes in the Longdong coal mining area with high groundwater level in east China. We collected water samples seven times in 2017 from all of these water bodies (precipitation, surface waters (river water and water from subsidence pits (WSP)), groundwater and soil water). Our main findings are three fold: (1) the values of slope and intercept of the local meteoric water line of Craig (LMWL) of precipitation for the study area are higher than the global meteoric water line of Craig (GMWL) because of the humid monsoon climate zoon, and the values of δD and δ18O of surface waters and soil water and groundwater deviated from LMWL to some extent with a range of 5–30%, and the D and 18O of precipitation and the surface waters have higher seasonal variation than groundwater; (2) the values of δD and δ18O of RMS for the whole soil profile (0–100 cm) are lower than that of precipitation and have obvious seasonal variations and great fluctuation in the topsoil (0–30/40 cm) and decrease at depth (30/40–70 cm) and stable in deep soil layers (below 70 cm deep); (3) the RMS with forest and crop enhanced water infiltration capacity and soil water mixing strength compared with the waste RMS, so establishment of forest and crops should be encouraged in the RMS; (4) the main sources of topsoil (0–30 cm for crop and 0–40 cm for forest) of RMS are precipitation through infiltration, the main supply for deep soil water (below 70 cm deep) is groundwater, and the soil water for the middle deep soil layers (30/40–70 cm) is mainly from mixing sources of precipitation, groundwater, and river water through pant root water absorbing and groundwater upshifting.


CERNE ◽  
2013 ◽  
Vol 19 (2) ◽  
pp. 237-245 ◽  
Author(s):  
Vinícius Augusto Morais ◽  
José Roberto Soares Scolforo ◽  
Carlos Alberto Silva ◽  
José Marcio de Mello ◽  
Lucas Rezende Gomide ◽  
...  

This study aimed at quantifying carbon (C) and biomass stocks in shoot portion, leaf litter, roots and soil within a fragment of dense savanna 'cerradão', 158.5 ha in area, located in Minas Gerais state. Measures were quantified using dendrometric parameters obtained during the forest inventory and collection of leaf litter, root and soil samples. Furrows were dug in the soil each 100 cm long, 50 cm wide and 100 cm deep in order to collect root samples at depths of 0-30 cm, 30-50 cm and 50-100 cm, and soil samples from the layers 0-10 cm, 10-20 cm, 20-40 cm, 40-60 cm and 60-100 cm, as well as any leaf litter from the surrounding surface. Analyses were performed in the Organic Matter Study Laboratory (DCS/UFLA) to determine C contents in the above matrices, using an Elementar analyzer model Vario TOC Cube. Higher C contents and stocks and lower density were noted in topmost soil layers. In cerradão, shoot portion was found to be the matrix contributing the most to biomass production, followed by roots and leaf litter. Carbon stock in the fragment was 139.7 Mg ha-1. Soil was the matrix contributing the most to stocked C (64.8%), followed by the shoot portion (26.3%), roots (5.2%) and leaf litter (3.7%).


2014 ◽  
Vol 41 (11) ◽  
pp. 1107 ◽  
Author(s):  
Jaime Puértolas ◽  
Carlos Ballester ◽  
E. David Elphinstone ◽  
Ian C. Dodd

To test the hypothesis that root growth at depth is a key trait explaining some genotypic differences in drought tolerance in potato (Solanum tuberosum L.), two varieties (Horizon and Maris Piper) differing in drought tolerance were subjected to different irrigation regimes in pots in a glasshouse and in the field under a polytunnel. In the glasshouse, both cultivars showed similar gas exchange, leaf water potential, leaf xylem ABA concentration and shoot biomass independently of whether plants were grown under well watered or water deficit conditions. Under well watered conditions, root growth was three-fold higher in Horizon compared with Maris Piper, 3 weeks after emergence. Water deficit reduced this difference. In the polytunnel, applying 60% or less irrigation volume compared with full irrigation significantly decreased tuber yield in Maris Piper but not in Horizon. This was coincident with the higher root density of Horizon in deep soil layers (>40 cm), where water content was stable. The results suggest that early vigorous root proliferation may be a useful selection trait for maintaining yield of potato under restricted irrigation or rainfall, because it rapidly secures access to water stored in deep soil layers. Although selecting for vigorous root growth may assist phenotyping screening for drought tolerance, these varieties may require particular environmental or cultural conditions to express root vigour, such as sufficiently deep soils or sufficient water shortly after emergence.


2021 ◽  
Vol 12 ◽  
Author(s):  
Beat Frey ◽  
Lorenz Walthert ◽  
Carla Perez-Mon ◽  
Beat Stierli ◽  
Roger Köchli ◽  
...  

Soil microorganisms such as bacteria and fungi play important roles in the biogeochemical cycling of soil nutrients, because they act as decomposers or are mutualistic or antagonistic symbionts, thereby influencing plant growth and health. In the present study, we investigated the vertical distribution of the soil microbiome to a depth of 2 m in Swiss drought-exposed forests of European beech and oaks on calcareous bedrock. We aimed to disentangle the effects of soil depth, tree (beech, oak), and substrate (soil, roots) on microbial abundance, diversity, and community structure. With increasing soil depth, organic carbon, nitrogen, and clay content decreased significantly. Similarly, fine root biomass, microbial biomass (DNA content, fungal abundance), and microbial alpha-diversity decreased and were consequently significantly related to these physicochemical parameters. In contrast, bacterial abundance tended to increase with soil depth, and the bacteria to fungi ratio increased significantly with greater depth. Tree species was only significantly related to the fungal Shannon index but not to the bacterial Shannon index. Microbial community analyses revealed that bacterial and fungal communities varied significantly across the soil layers, more strongly for bacteria than for fungi. Both communities were also significantly affected by tree species and substrate. In deep soil layers, poorly known bacterial taxa from Nitrospirae, Chloroflexi, Rokubacteria, Gemmatimonadetes, Firmicutes and GAL 15 were overrepresented. Furthermore, archaeal phyla such as Thaumarchaeota and Euryarchaeota were more abundant in subsoils than topsoils. Fungal taxa that were predominantly found in deep soil layers belong to the ectomycorrhizal Boletus luridus and Hydnum vesterholtii. Both taxa are reported for the first time in such deep soil layers. Saprotrophic fungal taxa predominantly recorded in deep soil layers were unknown species of Xylaria. Finally, our results show that the microbial community structure found in fine roots was well represented in the bulk soil. Overall, we recorded poorly known bacterial and archaeal phyla, as well as ectomycorrhizal fungi that were not previously known to colonize deep soil layers. Our study contributes to an integrated perspective on the vertical distribution of the soil microbiome at a fine spatial scale in drought-exposed forests.


Sign in / Sign up

Export Citation Format

Share Document