scholarly journals Germination of the invasive legume Lupinus polyphyllus depends on cutting date and seed morphology

NeoBiota ◽  
2020 ◽  
Vol 60 ◽  
pp. 79-95 ◽  
Author(s):  
Yves P. Klinger ◽  
Rolf Lutz Eckstein ◽  
David Horlemann ◽  
Annette Otte ◽  
Kristin Ludewig

In semi-natural grasslands, mowing leads to the dispersal of species that have viable seeds at the right time. For invasive plant species in grasslands, dispersal by mowing should be avoided, and information on the effect of cutting date on the germination of invasive species is needed. We investigated the germination of seeds of the invasive legume Lupinus polyphyllus Lindl. depending on the cutting date. We measured seed traits associated with successful germination that can be assessed by managers for an improved timing of control measures. To this end, we sampled seeds of L. polyphyllus on six cutting dates and analyzed the germination of these seeds in climate chambers and under ambient weather conditions. We collected information on seed morphology (color/size/hardseededness) for each cutting date to identify seed traits associated with successful germination. Observed germination patterns were highly asynchronous and differed between seeds cut at different dates. Seeds cut early, being green and soft, tended to germinate in autumn. Seeds cut late, being dark and hard, were more prone to germinate the following spring, after winter stratification. This allows the species to utilize germination niches throughout the year, thus indicating a bet-hedging strategy. Seed color and the percentage of hard seeds were good predictors of germination percentage, but not of mean germination time and synchrony. Managers should prevent the species producing black and hard seeds, while cutting plants carrying green and soft seeds is less problematic. Furthermore, germination patterns differed between climate chambers and the common garden, mainly because germination of dormant seeds was lower in climate chambers. More germination experiments under ambient weather conditions should be carried out, as they can give information on the germination dynamics of invasive species.

2017 ◽  
Vol 4 (1) ◽  
pp. 148-160
Author(s):  
Arjun C.P ◽  
Anoop V.K ◽  
Tijo K.J ◽  
Anoopkumar T.K ◽  
Roshnath R

Butterfly diversity was recorded from Nov (2013) - May (2014) in Pookode region. A total number of 128 species recorded from the five families; Nymphalidae (46 species) Lycaenidae (28 species), Hesperiidae (22 species), Pieridae (17 species) and Papilionidae (15 species) respectively. During the survey invasive plant species were also recorded. There were 36 species of invasive plants from 18 families identified from the study area. More butterflies were attracted towards nectar offering invasive plants. Chromolaena odorata, Ipomea cairica, Lantana camara, Merremia vitifolia, Mikania micrantha, Mimosa diplotricha, Pennisetumpolystachyon, Pteridium aquilinum, Quisqualis indica and Sphagneticola trilobata were the major invasive plants found in the Pookode region and their flower attracts butterfly for pollination. Even though nectar offered by the plants are supportive for growth, in long run these species can affect butterfly population bydeclining native host larval plant species for butterfly reproduction. Invasive species compete with the native flora and reduce its population. Management practices like physical, chemical and modern bio control measures could be used for eradicating of invasive plants. Wise use of invasive plants for other economical purpose such as bio-fuel, medicinal purpose, bio-pesticide and handicraft could be suggested. Successful management of invasive species are needed for conserving Lepidoptera fauna and other native biota of the area.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lifeng Zhou ◽  
Hongwei Yu ◽  
Kaiwen Yang ◽  
Li Chen ◽  
Wandong Yin ◽  
...  

Invasive plants may change their seed traits to adapt to the environment and facilitate their performance. Studies on variation in seed traits among populations of an invader along latitudes/longitudes may assist in revealing how invasive plants cope with variable climates. In this study, we collected seeds of 26 populations of the global invasive plant Ambrosia artemisiifolia along ranges spanning 23° latitudes and 20° longitudes that are highly correlated in its invasive range in China. We measured over 20 seed traits, including seed morphology, phytohormone, nutrients, and germination, and investigated how the climate along the latitudes affects those traits. We found that germination time was significantly delayed with increasing latitude and longitude, while the reversed patterns were true for the germination rate. From low to high latitude, seed size, abscisic acid, and fatty acid were increased, likely affecting seed germination. Our analysis further demonstrated that temperature is the dominant driver of the variability in seed traits and germination. Germination rates of larger seeds in cold ranges were lower, while smaller seeds from warm ranges germinated faster, likely indicating adaptive strategies of the invasive plant in seed trait functional ecology. Together, our findings provide new insights into understanding the seed adaptation strategies during the invasion process and the underlying physiological and biochemical mechanisms involved.


Diversity ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 264
Author(s):  
Marjaana Hassani ◽  
Elisa Vallius ◽  
Saija Rasi ◽  
Kai Sormunen

Invasive plant species threaten native species and habitats causing ecologic, economic and social burden. When creating climate friendly solutions by utilizing plant biomasses in biogas and fertilizer production, safety should be ensured concerning the use of residues. This study concentrates on the treatment of biomasses containing invasive plant material by tunnel and windrow composting, and by farm-scale and laboratory-scale anaerobic digestion (AD) in mesophilic conditions. Germination of the nationally settled and harmful invasive species Lupinus polyphyllus Lindl. was investigated after these processes. In addition, the role of the conditions found in the processes that destroyed seeds were studied, such as the time of exposure, temperature and static pressure. Dormant seeds are well protected against harsh conditions and can survive through various stress factors, but also become vulnerable as more factors are combined and time of exposure is extended. Our results suggest that the risks involved for the utilization of harmful invasive species increase with mesophilic temperatures and single treatments if the processing conditions are not stabile. One-month treatment with windrow composting showed a high risk for dormant seeds of L. polyphyllus seeds to survive, whereby extending the processing time reduced it substantially. Hard coated seeds can thus be broken with a combination of thermophilic temperatures, moisture and static pressure.


Author(s):  
Jayan Wijesingha ◽  
Thomas Astor ◽  
Damian Schulze-Brüninghoff ◽  
Michael Wachendorf

Abstract Knowledge on the spatio-temporal distribution of invasive plant species is vital to maintain biodiversity in grasslands which are threatened by the invasion of such plants and to evaluate the effect of control activities conducted. Manual digitising of aerial images with field verification is the standard method to create maps of the invasive Lupinus polyphyllus Lindl. (Lupine) in semi-natural grasslands of the UNESCO biosphere reserve “Rhön”. As the standard method is labour-intensive, a workflow was developed to map lupine coverage using an unmanned aerial vehicle (UAV)-borne remote sensing (RS) along with object-based image analysis (OBIA). UAV-borne red, green, blue and thermal imaging, as well as photogrammetric canopy height modelling (CHM) were applied. Images were segmented by unsupervised parameter optimisation into image objects representing lupine plants and grass vegetation. Image objects obtained were classified using random forest classification modelling based on objects’ attributes. The classification model was employed to create lupine distribution maps of test areas, and predicted data were compared with manually digitised lupine coverage maps. The classification models yielded a mean prediction accuracy of 89%. The maximum difference in lupine area between classified and digitised lupine maps was 5%. Moreover, the pixel-wise map comparison showed that 88% of all pixels matched between classified and digitised maps. Our results indicated that lupine coverage mapping using UAV-borne RS data and OBIA provides similar results as the standard manual digitising method and, thus, offers a valuable tool to map invasive lupine on grasslands.


2021 ◽  
pp. 1-23
Author(s):  
Zahra Bitarafan ◽  
Wiktoria Kaczmarek-Derda ◽  
Lars Olav Brandsæter ◽  
Inger Sundheim Fløistad

Abstract Eradication of alien invasive species in the soil with steam as an alternative to chemical fumigation may allow contaminated soil to be reused. We have investigated steam disinfestation of soil to combat invasive plant species in three experiments including different temperatures and exposure durations using a stationary soil steaming prototype device. The experiments included effects on seed germination of Lupinus polyphyllus (LUPPO), Impatiens glandulifera (IPAGL), and Avena fatua (one population from Poland AVEFA(P) and one from Norway AVEFA(N)), as well as effects on sprouting rhizome fragments of Solidago canadensis (SOOCA) and Reynoutria x bohemica (REYBO). In the first experiment (i) we tested four different soil temperatures of 64, 75, 79 and 98°C with an exposure duration of 90 s. In the second and third experiments we tested exposure durations of (ii) 30, 90 and 180 s and (iii) 90, 180 and 540 s, respectively, at 98°C. Seed pre-treatment of 14 days cooling for LUPPO and IPAGL, no seed pre-treatment and 12 h moistening for AVEFA populations, and 5 and 10 cm cutting size for REYBO were applied. Our results showed germination/sprouting was inhibited at 75°C for I. glandulifera (for 90 s) and 98°C for the other species; however, longer exposure duration was needed for L. polyphyllus. While 30 s at 98°C was enough to kill A. fatua seeds and S. canadensis and R. x bohemica rhizome fragments, 180 s exposure duration was needed to kill L. polyphyllus seeds. The results showed promising control levels of invasive plant propagules in contaminated soil by steaming, supporting the steam treatment method as a potential way of soil disinfection to avoid dispersal of invasive species.


2021 ◽  
Vol 13 (10) ◽  
pp. 5685
Author(s):  
Panbo Guan ◽  
Hanyu Zhang ◽  
Zhida Zhang ◽  
Haoyuan Chen ◽  
Weichao Bai ◽  
...  

Under the Air Pollution Prevention and Control Action Plan (APPCAP) implemented, China has witnessed an air quality change during the past five years, yet the main influence factors remain relatively unexplored. Taking the Beijing-Tianjin-Hebei (BTH) and Yangtze River Delta (YRD) regions as typical cluster cities, the Weather Research Forecasting (WRF) and Comprehensive Air Quality Model with Extension (CAMx) were introduced to demonstrate the meteorological and emission contribution and PM2.5 flux distribution. The results showed that the PM2.5 concentration in BTH and YRD significantly declined with a descend ratio of −39.6% and −28.1%, respectively. For the meteorological contribution, those regions had a similar tendency with unfavorable conditions in 2013–2015 (contribution concentration 1.6–3.8 μg/m3 and 1.1–3.6 μg/m3) and favorable in 2016 (contribution concentration −1.5 μg/m3 and −0.2 μg/m3). Further, the absolute value of the net flux’s intensity was positively correlated with the degree of the favorable/unfavorable weather conditions. When it came to emission intensity, the total net inflow flux increased, and the outflow flux decreased significantly across the border with the emission increasing. In short: the aforementioned results confirmed the effectiveness of the regional joint emission control and provided scientific support for the proposed effective joint control measures.


2016 ◽  
Vol 04 (04) ◽  
pp. 1650027
Author(s):  
Rong ZHU

Analysis of the meteorological conditions for atmospheric pollutant dispersion before and after the 2014 APEC meeting shows very significant effects of air pollution prevention and control measures on the meeting. It proves that the proper measures to control air pollution in the Beijing-Tianjin-Hebei Region are: establishing a regional emergency response mechanism to reduce emissions in the case of heavy air pollution, strengthening the local emergency response measures for emission reduction, and enhancing the early warning system for weather conditions conducive to heavy air pollution.


2017 ◽  
Vol 10 (3) ◽  
pp. 262-270 ◽  
Author(s):  
Mélissa De Wilde ◽  
Elise Buisson ◽  
Nicole Yavercovski ◽  
Loïc Willm ◽  
Livia Bieder ◽  
...  

Successful invasive plant eradication is rare, because the methods used target the adult stage, not taking into account the development capacity of a large seedbank. Heating by microwave was considered, because it offers a means to quickly reach the temperature required for loss of seed viability and inhibition of germination. Previous results were not encouraging, because homogeneous and deep-wave penetration was not achieved, and the various parameters that can affect treatment effectiveness were incompletely addressed. This study aimed to determine, under experimental conditions, the best microwave treatment to inhibit invasive species seed germination in terms of power (2, 4, 6 kW) and duration (2, 4, 8 min) of treatments and depending on soil moisture (10%, 13%, 20%, 30%) and seed burial depth (2, 12 cm). Three invasive species were tested: Bohemian knotweed, giant goldenrod, and jimsonweed. The most effective treatments required relatively high power and duration (2kW8min, 4kW4min, 6kW2min, and 6kW4min; 4kW8min and 6kW8min were not tested for technical reasons), and their effectiveness diminished with increasing soil moisture with germination percentage between 0% and 2% for the lowest soil moisture, 0% and 56% for intermediate soil moisture, and 27% and 68% in control treatments. For the highest soil moisture, only 2kW8min and 4kW4min reduced germination percentage between 2% and 19%. Occasionally, germination of seeds located at the 12-cm depth was more strongly affected. Giant goldenrod seeds were the most sensitive, probably due to their small size. Results are promising and justify further experiments before developing a field microwave device to treat large volumes of soil infested by invasive seed efficiently and with reasonable energy requirements. Other types of soil, in terms of texture and organic matter content, should be tested in future experiments, because these factors influence soil water content and, consequently, microwave heating.


2016 ◽  
Vol 9 (2) ◽  
pp. 158-166
Author(s):  
Ardak Akhatova ◽  
Assylan Kassymov ◽  
Meruyert Kazmaganbetova ◽  
Luis Ramon Rojas-Solórzano

The aim of this paper is to consider one of the most traffic-loaded regions of Astana city (Kazakhstan) and to determine the concentration of carbon-monoxide (CO) in the air during the peak hours. CFD analysis based on the SolidWorks-EFD platform was used to simulate the dispersion of contaminants given the estimated emission rates and weather conditions at the crossroad of Bogenbay Batyr and Zhenis Avenues in Astana. Turbulence prediction was based on k-ε model with wall functions. The governing equations were discretized using the finite volume method and a 2nd order spatial scheme. The mesh verification was based on 1% convergence criterion for a 50% of mesh density increment; air pressure near the wall of a selected building was chosen as the parameter to control the convergence. Numerical results are presented for prevailing conditions during all 4 seasons of the year, demonstrating that the highest levels of CO are recorded in summer and reach the values up to 11.2 ppm which are still lower than the maximum level admitted for humans. Nevertheless, obtained results show that Astana is gradually becoming a city that is likely to reach the critical levels of pollutants in the nearest future if control measures are not taken with enough anticipation. As for a future work, it is proposed to perform in-situ validation of specific scenarios to check and support the results obtained with CFD and to develop then specific policies for tackling the problem before it becomes evident.


Sign in / Sign up

Export Citation Format

Share Document