The relationship between the phageome and human health: are bacteriophages beneficial or harmful microbes?

2021 ◽  
pp. 1-14
Author(s):  
L. Fernández ◽  
A.C. Duarte ◽  
A. Rodríguez ◽  
P. García

In the context of the global antibiotic resistance crisis, bacteriophages are increasingly becoming promising antimicrobial agents against multi-resistant bacteria. Indeed, a huge effort is being made to bring phage-derived products to the market, a process that will also require revising the current regulations in order to facilitate their approval. However, despite the evidence supporting the safety of phages for humans, the general public would still be reluctant to use ‘viruses’ for therapeutic purposes. In this scenario, we consider that it is important to discuss the role of these microorganisms in the equilibrium of the microbiota and how this relates to human health. To do that, this review starts by examining the role of phages as key players in bacterial communities (including those that naturally inhabit the human body), modulating the species composition and contributing to maintain a ‘healthy’ status quo. Additionally, in specific situations, e.g. an infectious disease, bacteriophages can be used as target-specific antimicrobials against pathogenic bacteria (phage therapy), while being harmless to the desirable microbiota. Apart from that, incipient research shows the potential application of these viruses to treat diseases caused by bacterial dysbiosis. This latter application would be comparable to the use of probiotics or prebiotics, since bacteriophages can indirectly improve the growth of beneficial bacteria in the gastrointestinal tract by removing undesirable competitors. On the other hand, possible adverse effects do not appear to be an impediment to promote phage therapy. Nonetheless, it is important to remember their potentially negative impact, mainly concerning their immunogenicity or their potential spread of virulence and antibiotic resistance genes, especially by temperate phages. Overall, we believe that phages should be largely considered beneficial microbes, although it is paramount not to overlook their potential risks.

2021 ◽  
Author(s):  
Johan Bengtsson-Palme ◽  
Viktor Jonsson ◽  
Stefanie Heß

AbstractIt is generally accepted that intervention strategies to curb antibiotic resistance cannot solely focus on human and veterinary medicine but must also consider environmental settings. While the environment clearly has a role in the transmission of resistant bacteria, it is less clear what role it plays in the emergence of novel types of resistance. It has been suggested that the environment constitutes an enormous recruitment ground for resistance genes to pathogens, but the extent to which this actually happens is unknown. In this study, we built a model framework for resistance emergence and used the available quantitative data on the relevant processes to identify the steps which are limiting the appearance of antibiotic resistance determinants in human or animal pathogens. We also assessed the effect of uncertainty in the available data on the model results. We found that in a majority of scenarios, the environment would only play a minor role in the emergence of novel resistance genes. However, the uncertainty around this role is enormous, highlighting an urgent need of more quantitative data to understand the role of the environment in antibiotic resistance development. Specifically, more data is most needed on the fitness costs of antibiotic resistance gene (ARG) carriage, the degree of dispersal of resistant bacteria from the environment to humans, but also the rates of mobilization and horizontal transfer of ARGs. Quantitative data on these processes is instrumental to determine which processes that should be targeted for interventions to curb development and transmission of resistance.


2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Zhongli Chen ◽  
Jinsong Guo ◽  
Yanxue Jiang ◽  
Ying Shao

AbstractThe issue of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has created enormous threat to global health. In an effort to contain the spread of COVID-19, a huge amount of disinfectants and antibiotics have been utilized on public health. Accordingly, the concentration of disinfectants and antibiotics is increasing rapidly in various environments, including wastewater, surface waters, soils and sediments. The aims of this study were to analyze the potential ecological environment impacts of disinfectants and antibiotics by summarizing their utilization, environmental occurrence, distribution and toxicity. The paper highlights the promoting effects of disinfectants and antibiotics on antibiotic resistance genes (ARGs) and even antibiotic resistant bacteria (ARB). The scientific evidences indicate that the high concentration and high dose of disinfectants and antibiotics promote the evolution toward antimicrobial resistance through horizontal gene transformation and vertical gene transformation, which threaten human health. Further concerns should be focused more on the enrichment, bioaccumulation and biomagnification of disinfectants, antibiotics, antibiotic resistance genes (ARGs) and even antibiotic resistant bacteria (ARB) in human bodies.


Author(s):  
Milva Pepi ◽  
Silvano Focardi

Aquaculture is the productive activity that will play a crucial role in the challenges of the millennium, such as the need for proteins that support humans and the respect for the environment. Aquaculture is an important economic activity in the Mediterranean basin. A great impact is presented, however, by aquaculture practices as they involve the use of antibiotics for treatment and prophylaxis. As a consequence of the use of antibiotics in aquaculture, antibiotic resistance is induced in the surrounding bacteria in the column water, sediment, and fish-associated bacterial strains. Through horizontal gene transfer, bacteria can diffuse antibiotic-resistance genes and mobile resistance genes further spreading genetic determinants. Once triggered, antibiotic resistance easily spreads among aquatic microbial communities and, from there, can reach human pathogenic bacteria, making vain the use of antibiotics for human health. Climate change claims a significant role in this context, as rising temperatures can affect cell physiology in bacteria in the same way as antibiotics, causing antibiotic resistance to begin with. The Mediterranean Sea represents a ‘hot spot’ in terms of climate change and aspects of antibiotic resistance in aquaculture in this area can be significantly amplified, thus increasing threats to human health. Practices must be adopted to counteract negative impacts on human health, with a reduction in the use of antibiotics as a pivotal point. In the meantime, it is necessary to act against climate change by reducing anthropogenic impacts, for example by reducing CO2 emissions into the atmosphere. The One Health type approach, which involves the intervention of different skills, such as veterinary, ecology, and medicine in compliance with the principles of sustainability, is necessary and strongly recommended to face these important challenges for human and animal health, and for environmental safety in the Mediterranean area.


2019 ◽  
Author(s):  
Chengzhen L. Dai ◽  
Claire Duvallet ◽  
An Ni Zhang ◽  
Mariana G. Matus ◽  
Newsha Ghaeli ◽  
...  

AbstractThe spread of bacterial antibiotic resistance across human and environmental habitats is a global public health challenge. Wastewater has been implicated as a major source of antibiotic resistance in the environment, as it carries resistant bacteria and resistance genes from humans into natural ecosystems. However, different wastewater environments and antibiotic resistance genes in wastewater do not all present the same level of risk to human health. In this study, we investigate the public health relevance of antibiotic resistance found in wastewater by combining metagenomic sequencing with risk prioritization of resistance genes, analyzing samples across urban sewage system environments in multiple countries. We find that many of the resistance genes commonly found in wastewater are not readily present in humans. Ranking antibiotic resistance genes based on their potential pathogenicity and mobility reveals that most of the resistance genes in wastewater are not clinically relevant. Additionally, we show that residential wastewater resistomes pose greater risk to human health than those in wastewater treatment plant samples, and that residential wastewater can be as risky as hospital effluent. Across countries, differences in antibiotic resistance in residential wastewater can, in some cases, reflect differences in antibiotic drug consumption. Finally, we find that the flow of antibiotic resistance genes is influenced by geographical distance and environmental selection. Taken together, we demonstrate how different analytical approaches can provide greater insights into the public health relevance of antibiotic resistance in wastewater.


2019 ◽  
Vol 63 (8) ◽  
Author(s):  
Monika Dolejska ◽  
Ivan Literak

ABSTRACT Wild animals foraging in the human-influenced environment are colonized by bacteria with clinically important antibiotic resistance. The occurrence of such bacteria in wildlife is influenced by various biological, ecological, and geographical factors which have not yet been fully understood. More research focusing on the human-animal-environmental interface and using novel approaches is required to understand the role of wild animals in the transmission of antibiotic resistance and to assess potential risks for the public health.


2019 ◽  
Vol 47 (1) ◽  
pp. 477-486 ◽  
Author(s):  
Ciara Tyrrell ◽  
Catherine M. Burgess ◽  
Fiona P. Brennan ◽  
Fiona Walsh

Abstract Antibiotic resistance is currently one of the greatest threats to human health. The global overuse of antibiotics in human medicine and in agriculture has resulted in the proliferation and dissemination of a multitude of antibiotic resistance genes (ARGs). Despite a large proportion of antibiotics being used in agriculture, little is understood about how this may contribute to the overall antibiotic resistance crisis. The use of manure in agriculture is a traditional and widespread practice and is essential for returning nutrients to the soil; however, the impact of continuous manure application on the environmental microbiome and resistome is unknown. The use of antibiotics in animal husbandry in therapeutic and sub-therapeutic doses creates a selective pressure for ARGs in the gut microbiome of the animal, which is then excreted in the faeces. Therefore, the application of manure to agricultural land is a potential route for the transmission of antibiotic-resistant bacteria from livestock to crops, animals and humans. It is of vital importance to understand the mechanisms behind ARG enrichment and its maintenance both on the plant and within the soil microbiome to mitigate the spread of this resistance to animals and humans. Understanding this link between human health, animal health, plant health and the environment is crucial to inform implementation of new regulations and practice regarding antibiotic use in agriculture and manure application, aimed at ensuring the antibiotic resistance crisis is not aggravated.


2004 ◽  
Vol 50 (1) ◽  
pp. 45-50 ◽  
Author(s):  
P.T. Biyela ◽  
J. Lin ◽  
C.C. Bezuidenhout

The widespread and indiscriminate use of antibiotics has led to the development of antibiotic resistance in pathogenic, as well as commensal, microorganisms. Resistance genes may be horizontally or vertically transferred between bacterial communities in the environment. The recipient bacterial communities may then act as a reservoir of these resistance genes. In this study, we report the incidence of antibiotic resistance in enteric bacteria isolated from the Mhlathuze River and the distribution of genetic elements that may be responsible for the observed antibiotic resistance. The resistance of the enteric bacteria isolated over a period of one year showed that resistance to the older classes of antibiotics was high (94.7% resistance to one antibiotic and 80.8% resistance to two antibiotics). Furthermore, antibiotic resistance data of the environmental isolates showed a strong correlation (r = 0.97) with data obtained from diarrhoea patients. PCR based methods demonstrated that class 1 integrons were present in >50% of the environmental bacterial isolates that were resistant to multiple antibiotics. This class of integrons is capable of transferring genes responsible for resistance to b-lactam, aminoglycoside, sulfonamide and quaternary ammonium antimicrobial agents. Conjugate plasmids were also isolated, but from a small percentage of isolates. This study showed that the Mhlathuze River (a) is a medium for the spread of bacterial antibiotic resistance genes, (b) acts as a reservoir for these genes and (c) due to socio-economic pressures, may play a role in the development and evolution of these genes along this river system.


Sign in / Sign up

Export Citation Format

Share Document