Influence of cross-fit footwear on patellofemoral kinetics during running activities

2017 ◽  
Vol 13 (2) ◽  
pp. 105-111 ◽  
Author(s):  
J.K. Sinclair ◽  
P.J. Taylor ◽  
B. Sant

The aim of this work was to examine the effects of barefoot, cross-fit, minimalist and conventional footwear on patellofemoral loading during running. Twelve cross-fit athletes ran at 4.0 m/s in each of the four footwear conditions. Lower limb kinematics were collected using an 8 camera motion analysis system and patellofemoral loading was estimated using a mathematical modelling approach. Differences between footwear were examined using one-way repeated measures ANOVA. The results showed the peak patellofemoral force and stress were significantly reduced when running barefoot (force = 3.42 BW & stress = 10.71 MPa) and in minimalist footwear (force = 3.73 BW & stress = 11.64 MPa) compared to conventional (force = 4.12 BW & stress = 12.69 MPa) and cross-fit (force = 3.97 BW & stress = 12.30 MPa) footwear. In addition, the findings also showed that patellofemoral impulse was significantly reduced when running barefoot (0.35 BW·s) and in minimalist footwear (0.36 BW·s) compared to conventional (0.42 BW·s) and cross-fit (0.38 BW·s) footwear. Given the proposed association between patellofemoral loading and patellofemoral disorders, the outcomes from the current investigation suggest that cross-fit athletes who select barefoot and minimalist footwear for their running activities may be at reduced risk from patellofemoral joint pathology in comparison to conventional and cross-fit footwear conditions.

2020 ◽  
Vol 35 (2) ◽  
pp. 96-102
Author(s):  
Rebekha Duncan ◽  
Catherine Wild ◽  
Leo Ng ◽  
Danica Hendry ◽  
Sarah Carter ◽  
...  

BACKGROUND: Dancing with legs externally rotated (turnout) is a fundamental element of ballet technique. A reliance on floor friction to achieve turnout may contribute toward the high injury rate in dancers. Joint strategies used by dancers in high and low friction turnout conditions are not well understood. OBJECTIVES: To quantify the lower limb and lumbar spine joint strategies used by female pre-professional dancers to achieve turnout in low-friction (rotation discs) and high-friction (functional and forced) conditions. METHODS: Twenty-three pre-professional female dancers participated in the study. A 12-camera motion analysis system collected hip and knee external rotation (ER), ankle abduction, and lumbar extension angles in three turnout conditions and passive hip ER range of motion angles. Repeated measures ANOVA analysed the differences between joint angles, maximum turnout angle (foot relative to pelvis), and available hip ER. RESULTS: Dancers demonstrated lower knee ER (18.5±4.8°) and ankle abduction (6.0±7.7°) angles during low-friction turnout compared to higher friction conditions (p<0.05). Dancers utilised between 70–83% of available hip ER within all conditions. Low-friction turnout demonstrated greater hip ER contribution within maximum turnout (43%) compared to higher friction conditions. Dancers demonstrated greater lumbar extension angles in low-friction turnout compared to higher friction conditions (p<0.05). CONCLUSIONS: Further hip ER strength training is required to promote greater hip ER range within the position. Rotation discs may be a valuable training tool as dancers demonstrated greater hip ER utilisation with less knee ER and ankle abduction; however, this position did promote undesirable lumbar extension.


2017 ◽  
Vol 13 (4) ◽  
pp. 251-258 ◽  
Author(s):  
R. Graydon ◽  
D. Fewtrell ◽  
S. Atkins ◽  
J. Sinclair

Football (soccer) players have a high risk of injuring the lower extremities. To reduce the risk of ankle inversion injuries ankle braces can be worn. To reduce the risk of ankle contusion injuries ankle protectors can be utilised. However, athletes can only wear one of these devices at a time. The effects of ankle braces on stance limb kinematics has been extensively researched, however ankle protectors have had little attention. Therefore, the current study aimed to investigate the effects of ankle protectors on lower extremity kinematics during the stance phase of jogging and compare them with braced and uncovered ankles. Twelve male participants ran at 3.4 m/s in three test conditions; ankle braces (BRACE), ankle protectors (PROTECTOR) and with uncovered ankles (WITHOUT). Stance phase kinematics were collected using an eight-camera motion capture system. Kinematic data between conditions were analysed using one-way repeated measures ANOVA. The results showed that BRACE (absolute range of motion (ROM) = 10.72° and relative ROM = 10.26°) significantly (P<0.05) restricted the ankle in the coronal plane when compared to PROTECTOR (absolute ROM=13.44° and relative ROM =12.82°) and WITHOUT (absolute ROM=13.64° and relative ROM=13.10°). It was also found that both BRACE (peak dorsiflexion=17.02° and absolute ROM=38.34°) and PROTECTOR (peak dorsiflexion =18.46° and absolute ROM =40.15°) significantly (P<0.05) reduced sagittal plane motion when compared to WITHOUT (peak dorsiflexion =19.20° and absolute ROM =42.66°). Ankle protectors’ effects on lower limb kinematics closely resemble that of an unbraced ankle. Therefore, ankle protectors should only be used as a means to reduce risk of ankle contusion injuries and not implemented as a method to reduce the risk of ankle inversion injuries. Furthermore, the reductions found in sagittal plane motion of the ankle could possibly increase the bodies energy demand needed for locomotion when ankle protectors are utilised.


2014 ◽  
Vol 30 (1) ◽  
pp. 166-172 ◽  
Author(s):  
Jonathan Sinclair ◽  
Sarah J. Hobbs ◽  
Paul J. Taylor ◽  
Graham Currigan ◽  
Andrew Greenhalgh

In running analyses where both kinetic and kinematic information is recorded, participants are required to make foot contact with a force and/or pressure measuring transducer. Problems arise if participants modify their gait patterns to ensure contact with the device. There is currently a paucity of research investigating the influence of different underfoot kinetic measuring devices on 3-dimensional kinematics of running. Fifteen participants ran at 4.0 m/s in four different conditions: over a floor embedded force plate, Footscan, Matscan, and with no device. Three-dimensional angular kinematic parameters were collected using an eight camera motion analysis system. Hip, knee, and ankle joint kinematics were contrasted using repeated-measures ANOVAs. Participants also rated their subjective comfort in striking each of the three force measuring devices. Significant differences from the uninhibited condition were observed using the Footscan and Matscan in all three planes of rotation, whereas participants subjectively rated the force plate significantly more comfortable than either the Footscan/Matscan devices. The findings of the current investigation therefore suggest that the disguised floor embedded force plate offers the most natural running condition. It is recommended that analyses using devices such as the Footscan/Matscan mats overlying the laboratory surface during running should be interpreted with caution.


2013 ◽  
Vol 9 (1) ◽  
pp. 13-21 ◽  
Author(s):  
J. Sinclair ◽  
S.J. Hobbs ◽  
G. Currigan ◽  
P.J. Taylor

This study examined differences in kinetics and kinematics between barefoot and shod running, as well as between several barefoot inspired footwear models. Fifteen participants ran at 4.0 m/s ±5% in each footwear condition. Lower extremity kinematics in the sagittal, coronal and transverse planes were measured using an eight camera motion analysis system alongside ground reaction force parameters. Impact parameters and joint kinematics were subsequently compared using repeated measures ANOVAs. The kinetic analysis revealed that, compared to the conventional footwear, impact parameters were significantly greater in the barefoot and more minimal in barefoot inspired footwear. Running barefoot and in the minimal barefoot inspired footwear was associated with increases in flexion parameters of the knee and ankle at footstrike in relation to the conventional footwear. Finally, the results indicated that the barefoot and minimal barefoot inspired footwear were associated with greater peak eversion magnitude when compared to the conventional footwear. This study suggests that in barefoot and more minimalist barefoot inspired footwear running is associated with impact kinetics and rearfoot eversion parameters, previously linked to an increased risk of overuse injury, when compared to conventional shod running.


Kinesiology ◽  
2017 ◽  
Vol 49 (2) ◽  
pp. 178-184
Author(s):  
Jonathan Sinclair ◽  
Paul John Taylor

Squash is associated with a high incidence of chronic injuries. Currently there is a trend in many sports for players to select minimalist footwear. The aim of the current investigation was to examine the effects of squashspecific, running shoes and minimalist footwear on the kinetics and 3-D kinematics of the lunge movement in squash players. Twelve male squash players performed lunge movements whilst wearing minimalist, running shoe and squash-specific footwear. 3-D kinematics of the lower extremities were measured using an eightcamera motion analysis system alongside kinetic and tibial acceleration information which were obtained using a force platform and an accelerometer. Differences between footwear were examined using one-way repeated measures ANOVA. The results show firstly that loading rate parameters were significantly greater in the minimalist (average = 85.36B.W/s and instantaneous = 179.09B.W/s) footwear in relation to the squashspecific (average = 38.66 B.W/s and instantaneous = 50.73B.W/s) and running footwear (average = 37.62B.W/s and instantaneous = 48.14B.W/s). In addition, tibial acceleration parameters were also significantly greater in the minimalist (peak tibial acceleration = 8.45 g and tibial acceleration slope = 422.28g/s) footwear in relation to the squash-specific (peak tibial acceleration = 4.33 g and tibial acceleration slope = 182.57g/s) and running footwear (peak tibial acceleration = 4.81 g and tibial acceleration slope = 226.72g/s). The significant increase in impact loading in the minimalist footwear therefore suggests this type of shoe may place squash players at an increased risk of developing impact-related chronic injuries.


2013 ◽  
Vol 29 (1) ◽  
pp. 98-104 ◽  
Author(s):  
Vassilios Gourgoulis ◽  
Nikolaos Aggeloussis ◽  
Georgios Mavridis ◽  
Alexia Boli ◽  
Panagiotis Kasimatis ◽  
...  

The purpose of the current study was to investigate the acute effect of sprint resisted front crawl swimming on the propulsive forces of the hand. Eight female swimmers swam 25 m with maximal intensity, with and without added resistance. A bowl with a capacity of 2.2, 4 and 6 L was used as low, moderate and high added resistance, respectively. The underwater motion of the swimmer’s right hand was recorded using 4 cameras (60 Hz) and the digitization was undertaken using the Ariel Performance Analysis System. Repeated-measures ANOVA revealed that the velocity of the hand, the pitch and the sweepback angles of the hand, as well as the magnitude and the relative contribution of the drag and lift forces were not significantly modified and thus the magnitude of the resultant force did not change. Moreover, the magnitude of the effective force, as well as the angle formed between the resultant force and the axis of the swimming propulsion were not significantly affected. Thus, it could be concluded that resistance added as in this study did not alter the pattern of the propulsive hand forces associated with front crawl sprinting.


Author(s):  
Alanna Weisberg ◽  
Hyun Suk Lee ◽  
Tak Fung ◽  
Larry Katz

The overhand throw is a complex whole-body motor skill that is fundamental to many sports and activities. When throwing properly, the momentum generated to complete the movement begins in the lower body and transfers through the trunk to the throwing arm. This proof-of-concept study’s primary purpose was to evaluate the impact of the nonthrowing arm on the ball speed during an overhand throw with both the dominant and nondominant arms. Eighteen participants (age: 20.20 ± 2.90 years, nine women) were divided into two intervention groups: a pulling group taught to engage the nonthrowing arm through a pull toward the body and a nonpulling group taught the overhand throw using a component-based physical education curriculum. Each participant completed 12 total throws, six for each side (dominant and nondominant arm). Ball speed and kinematic data were collected using an eight-camera motion analysis system and were assessed using a pre–post study design. The two groups showed significant improvements pre–post when throwing with both the dominant and nondominant arms. Based on effect size comparisons, engaging the nonthrowing arm makes a meaningful difference in maximal ball velocity.


2021 ◽  
Vol 57 (2) ◽  
pp. 121-127
Author(s):  
Maxwell L. Albiero ◽  
◽  
Cody Dziuk ◽  
Janelle A. Cross

The dynamic motion of a baseball pitch generates high elbow and shoulder torques that can result in injury. Previous research has noted the importance of properly transferring energy from the lower extremities through the throwing arm to decrease joint stress. The goal of this study was to compare segmental powers between two levels of pitchers at various moments throughout the pitching cycle and observe their influence on upper extremity torques. Thirteen professional and thirteen collegiate pitchers participated in this study. Forty-seven reflective markers were attached to the subjects at specific landmarks. An 8-camera motion analysis system was set up surrounding an artificial pitching mound, where participants threw 10 fastballs. Data were exported and processed using Visual 3D software. Welch’s T-tests compared the means between groups with a significance set at p < 0.05. Professional pitchers were found to have significantly greater torso power at foot contact, maximum shoulder external rotation, ball release, and overall peak torso power. They also demonstrated significantly greater pitch velocity. Professional pitchers generated similar elbow varus torque and shoulder internal rotation torque compared to collegiate pitchers. These findings suggest professional pitchers more effectively use torso power to help increase pitch speed without increasing overall joint torques.


Author(s):  
Keith Sato Urbinati ◽  
Matheus Aguiar ◽  
Juarez Trancoso ◽  
Caluê Papcke ◽  
Percy Nohama ◽  
...  

Introdução: Devido às novas exigências nas regras competitivas com maiores pontuações, o karate vem se tornando um esporte com altas demandas da variável velocidade. Dentre diversos fatores que podem afetar a velocidade de golpes, o processo de fadiga exaustão é uma importante variável interveniente. Logo, como ocorre o controle motor para a manutenção de velocidade de golpes em situação de fatigabilidade?Objetivo: Identificar as estratégias motoras na manutenção de velocidade do gyako zuki no processo de fadiga.Métodos: Foi avaliado o atual campeão sul-americano da categoria -78 kg, sub 21 do sistema World Karate Federation (WKF). O atleta prática karate por 7 anos, é faixa preta, nível internacional, com 78 kg, 1,82m, 14,4% de gordura, VO2 máx = 55 kg.ml-1.min-1. O atleta realizou um protocolo de carga progressiva denominado Karate Specific Aerobic Test (KSAT) até a exaustão. Para o modelo biomecânico foi utilizado um sistema de análise de movimento de seis câmeras (Sistema Vicon).Resultados: As diferentes contribuições de velocidade de segmentos para a manutenção de vP (velocidade de pico) do gyako zuki ocorre uma vez que protocolos de fadiga comumente atribuem adaptações funcionais para superar o efeito da fadiga e continuar executando a ação técnica da ‘melhor’ forma possível.Conclusão: A principal estratégia motora adotada no processo de fadiga é a diminuição do deslocamento de tornozelo e joelho esquerdos à frente, o que diminui a vP do gyako zuki. O deslocamento do segmento de quadril ocorre em situação de homeostase e não necessariamente em situação de fadiga.The process of fatigue can change the motor strategy in velocities of strokes in karate: a case studyIntroduction: Because of the new requirements in the competitive rules with higher scores, karate has become a sport with high demands of speed. Among many factors that can affect the speed of strokes, the process of fatigue exhaustion is an important intervening variable. How the motor control for maintaining speed in strokes fatigability situation?Objective: Identify the motor strategies in maintaining gyako zuki speed in the fatigue process.Methods: We evaluated the current South American champion of the category -78 kg, under 21 years of age, World Karate Federation system (WKF). The karate athlete practice for 7 years, is a black belt, internationally, with 78 kg, 1.82m, 14.4% fat, VO2 max = 55 kg.ml -1 .min -1. The athlete made a progressive load protocol called Karate Specific Aerobic Test (KSAT) until exhaustion. For biomechanical model was used a six camera motion analysis system (Vicon system).Results: Different contributions segments speed to maintain Vp (peak velocity) gyako zuki occurs because fatigue protocols commonly assigned functional adaptations to overcome the effects of fatigue and continue running the technical action as 'better' as possible.Conclusion: The main motor strategy adopted in the fatigue process is the reduction of ankle dislocation and left knee forwarding, which reduces the vP of gyako zuki. The displacement of the hip segment occurs in homeostasis position and not necessarily by fatigue condition.


2015 ◽  
Vol 47 (1) ◽  
pp. 9-17 ◽  
Author(s):  
Jonathan Sinclair ◽  
Stephen Atkins ◽  
Jim Richards ◽  
Hayley Vincent

Abstract Research interest in barefoot running has expanded considerably in recent years, based around the notion that running without shoes is associated with a reduced incidence of chronic injuries. The aim of the current investigation was to examine the differences in the forces produced by different skeletal muscles during barefoot and shod running. Fifteen male participants ran at 4.0 m·s-1 (± 5%). Kinematics were measured using an eight camera motion analysis system alongside ground reaction force parameters. Differences in sagittal plane kinematics and muscle forces between footwear conditions were examined using repeated measures or Freidman’s ANOVA. The kinematic analysis showed that the shod condition was associated with significantly more hip flexion, whilst barefoot running was linked with significantly more flexion at the knee and plantarflexion at the ankle. The examination of muscle kinetics indicated that peak forces from Rectus femoris, Vastus medialis, Vastus lateralis, Tibialis anterior were significantly larger in the shod condition whereas Gastrocnemius forces were significantly larger during barefoot running. These observations provide further insight into the mechanical alterations that runners make when running without shoes. Such findings may also deliver important information to runners regarding their susceptibility to chronic injuries in different footwear conditions.


Sign in / Sign up

Export Citation Format

Share Document