Production, Proximate and Hematological Implications of Substituting Black Bean Meal in the Diet Fed Catfish

2020 ◽  
Vol 16 (1) ◽  
pp. 1-11
Author(s):  
Ukonze J.A. ◽  
E.N. Odo ◽  
N.I. Ossai ◽  
N.I. Dimelu ◽  
H.O. Agu
Keyword(s):  
2009 ◽  
Vol 3 (3) ◽  
pp. 226-230 ◽  
Author(s):  
James D. Kelly ◽  
Gregory V. Varner ◽  
Pat O'Boyle ◽  
Brian Long
Keyword(s):  

Crop Science ◽  
1991 ◽  
Vol 31 (6) ◽  
pp. 1710-1710 ◽  
Author(s):  
J. R. Myers ◽  
R. E. Hayes ◽  
J. J. Kolar
Keyword(s):  

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3833
Author(s):  
Fatma M. Elessawy ◽  
Albert Vandenberg ◽  
Anas El-Aneed ◽  
Randy W. Purves

Pulse crop seed coats are a sustainable source of antioxidant polyphenols, but are typically treated as low-value products, partly because some polyphenols reduce iron bioavailability in humans. This study correlates antioxidant/iron chelation capabilities of diverse seed coat types from five major pulse crops (common bean, lentil, pea, chickpea and faba bean) with polyphenol composition using mass spectrometry. Untargeted metabolomics was used to identify key differences and a hierarchical analysis revealed that common beans had the most diverse polyphenol profiles among these pulse crops. The highest antioxidant capacities were found in seed coats of black bean and all tannin lentils, followed by maple pea, however, tannin lentils showed much lower iron chelation among these seed coats. Thus, tannin lentils are more desirable sources as natural antioxidants in food applications, whereas black bean and maple pea are more suitable sources for industrial applications. Regardless of pulse crop, proanthocyanidins were primary contributors to antioxidant capacity, and to a lesser extent, anthocyanins and flavan-3-ols, whereas glycosylated flavonols contributed minimally. Higher iron chelation was primarily attributed to proanthocyanidin composition, and also myricetin 3-O-glucoside in black bean. Seed coats having proanthocyanidins that are primarily prodelphinidins show higher iron chelation compared with those containing procyanidins and/or propelargonidins.


2021 ◽  
Vol 349 ◽  
pp. 129167
Author(s):  
Manu P. Gangola ◽  
Bharathi Raja Ramadoss ◽  
Sarita Jaiswal ◽  
Catharine Chan ◽  
Rebecca Mollard ◽  
...  

2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 342-343
Author(s):  
Md Safiqur Rahaman Shishir ◽  
Muhammad Jamal Khan ◽  
Hassan Khanaki ◽  
Graham Brodie ◽  
Brendan Cullen ◽  
...  

Abstract Rumen degradability of crude protein (CP) of feed is a major factor that determines the utilization of CP in ruminant production. This study briefly reviewed the findings from six international studies of microwave (MW) heat treatment effect on feed CP rumen degradability and intestinal CP digestibility. Six in vitro studies of concentrate feed (canola seed, canola meal, soya bean meal, cottonseed meal, corn, and barley) showed a decrease in effective rumen degradability of dry matter and protein by 4–40% and 17–40%, respectively compared to control group (untreated concentrate feed). Among the six studies, four studies identified the MW heat treatment effect on intestinal protein digestibility. Due to MW heat treatment, canola seed, canola meal, soya bean meal, and cottonseed meal showed an increase in intestinal CP digestibility by 17%, 20%, 21%, and 19%, respectively. Overall the briefly reviewed studies showed that, MW heat treatment substantially reduced feed CP ruminal degradability and increased in vitro CP digestibility of ruminally undegraded CP.


Author(s):  
Philip C. Garnsworthy ◽  
Neil Saunders ◽  
Jennifer R. Goodman ◽  
Michael Marsden
Keyword(s):  

2020 ◽  
Vol 52 (4) ◽  
pp. 2135-2143 ◽  
Author(s):  
M. V. S. Lima ◽  
A. R. Bagaldo ◽  
M. Müller ◽  
E. E. G. Pinheiro ◽  
B. J. Almeida ◽  
...  

1988 ◽  
Vol 46 (3) ◽  
pp. 403-415 ◽  
Author(s):  
P. D. Penning ◽  
R. J. Orr ◽  
T. T. Treacher

ABSTRACTThe responses to supplements differing in protein concentration and degradability were measured in lactating ewes and their twin lambs when offered fresh ryegrass either cut or grazed. Housed Scottish Halfbred ewes, offered fresh-cut grass ad libitum received no supplement (N) or supplements with barley and maize starch (B); barley and soya-bean meal (S); barley, soya-bean meal and fish meal (SF) or barley and fish meal (F) in weeks 2 to 7 of lactation. By feeding supplements, herbage organic-matter (OM) intake was depressed (2·00 v. 1·74 kg/day). Mean daily milk yield was increased when protein supplements were given and, because milk protein concentration was higher for supplement F and similar for all other diets, mean daily milk protein output increased with increasing fish meal in the diet. Milk yields were N 2·55, B 2·59, S 3·17, SF 3·15 and F 3·17 kg/day. Total milk solids and fat concentrations were also higher for S, SF and F than N or B. Lambs from ewes supplemented with protein grew faster and the ewes generally lost less weight and body condition compared with unsupplemented ewes.At pasture, Masham ewes grazed at herbage allowances of either 4 (L) or 10 (H) kg OM per day and received no supplement (N) or supplements B or F, for the first 6 weeks of lactation and then, in weeks 7 to 12, grazed without supplements. For NL, BL, FL, NH, BH and FH respectively lamb growth rates from birth to 6 weeks were 235, 242, 274, 267, 286 and 302 g/day; from birth to 12 weeks were 210, 209, 249, 255, 275 and 287 g/day and losses in ewe body-condition score from birth to 12 weeks were 1·28, 1·22, 1·06, 0·97, 0·62 and 0·76.It is concluded that protein supplements increased milk yield and lamb growth rates and that the response tended to be greater with fish meal.


Sign in / Sign up

Export Citation Format

Share Document