scholarly journals Suitability of olive oil washing water as an electron donor in a feed batch operating bio-electrochemical system

2017 ◽  
Vol 68 (2) ◽  
pp. 198 ◽  
Author(s):  
F. G. Fermoso ◽  
M. J. Fernández-Rodríguez ◽  
A. Jiménez-Rodríguez ◽  
A. Serrano ◽  
R. Borja

Olive oil washing water derived from the two-phase manufacturing process was assessed as an electron donor in a bio-electrochemical system (BES) operating at 35 ºC. Start-up was carried out by using acetate as a substrate for the BES, reaching a potential of around +680 mV. After day 54, BES was fed with olive oil washing water. The degradation of olive oil washing water in the BES generated a maximum voltage potential of around +520 mV and a Chemical Oxygen Demand (COD) removal efficiency of 41%. However, subsequent loads produced a decrease in the COD removal, while current and power density diminished greatly. The deterioration of these parameters could be a consequence of the accumulation of recalcitrant or inhibitory compounds, such as phenols. These results demonstrated that the use of olive oil washing water as an electron donor in a BES is feasible, although it has to be further investigated in order to make it more suitable for a real application.

1996 ◽  
Vol 34 (5-6) ◽  
pp. 303-308 ◽  
Author(s):  
Leopoldo Mendoza-Espinosa ◽  
Tom Stephenson

Investigations were undertaken in order to compare the grease degradation rates for a natural population of acclimatised activated sludge micro-organisms with a commercial bioaugmentation product (bioadditive) under optimum conditions in laboratory-scale batch reactors. Lard was chosen as the source of grease because it contains the fatty acids more commonly found in urban wastewaters. During acclimatisation, the bioadditive reactor achieved a slightly better chemical oxygen demand (COD) removal efficiency than the activated sludge reactor. Therefore, under optimum conditions, activated sludge was able to degrade grease at nearly the same rate as a bioadditive solution. Moreover, the bioadditive and the activated sludge reactors had very similar kinetics of COD removal under different grease concentrations. It was concluded that the use of natural activated sludge micro-organisms was sufficient to acclimatise biological processes to removing grease.


Author(s):  
Md. Nurul Islam Siddique ◽  
Zularisham A. Wahid

The effect of gradual increase in organic loading rate (0LR) and temperature on biomethanation from petrochemical wastewater treatment was investigated using CSTR. The digester performance measured at hydraulic retention time (HRT) of4 to 2d, and start up procedure of the reactor was monitoredfor 60 days via chemical oxygen demand (COD) removal, biogas and methane production. By enhancing the temperature from 30 to 55 “C Thermophilic condition was attained, and pH was adjusted at 7 i 0.5. Supreme COD removal competence was 98i0.5% (r = 0.84) at an 0LR of 7.5 g-COD/Ld and 4d HRT. Biogas and methane yield were logged to an extreme of 0.80 L/g-CODremoved d (r = 0.81), 0.60 L/g-CODremoved d (r = 0.83), and mean methane content of biogas was 65.49%. The full acclimatization was established at 55 C with high COD removal efficiency and biogas production. An 0LR of 7.5 g-COD/L d and HRT of 4 days were apposite forpetrochemical wastewater treatment.


2013 ◽  
Vol 448-453 ◽  
pp. 589-595
Author(s):  
Zhi Li Chen ◽  
Zhen Jie Ren ◽  
Yang Yao ◽  
Yi Yang ◽  
Wan Tu Zhang

An integrated two-phase anaerobic reactor was designed to treat domestic sewage, and the corresponding start-up process was investigated.In this investigation, the volumetric loading rate ( VLR) of the system was raised by basically maintaining the influent COD ( Chemical Oxygen Demand) concentration and gradually decreasing the hydraulic retention time (HRT) at 35°C,and the start-up process was completed only in the 36 days. When the Influent pH was kept in the range of 7.39 ~ 7.67,the acidogenic phase and the methanogenic phaseof integrated two-phase anaerobic reactor were separated only by using the kinetic method. After completing this process, the reactor operated well with VLR at 1.31 kg / ( m3·d) and HRT at about 7h, and a COD removal of more than 80%,a SS removal of about 90% and a gas production rate of about 0.31L/h were respectively achieved.


2010 ◽  
Vol 13 (3) ◽  
pp. 92-102
Author(s):  
Trung Duc Le

The industrial production of ethanol by fermentation using molasses as main material that generates large quantity of wastewater. This wastewater contains high levels of colour and chemical oxygen demand (COD), that may causes serious environmental pollution. Most available treatment processes in Vietnam rely on biological methods, which often fail to treat waste water up to discharge standard. As always, it was reported that quality of treated wastewater could not meet Vietnameses discharge standard. So, it is necessary to improve the treatment efficiency of whole technological process and therefore, supplemental physico-chemical treatment step before biodegradation stage should be the appropriate choice. This study was carried out to assess the effect of coagulation process on decolourization and COD removal in molasses-based ethanol production wastewater using inorganic coaglutant under laboratory conditions. The experimental results showed that the reductions of COD and colour with the utilization of Al2(SO4)3 at pH 9.5 were 83% and 70%, respectively. Mixture FeSO4 – Al2(SO4)3 at pH 8.5 reduced 82% of colour and 70% of COD. With the addition of Polyacrylamide (PAM), the reduction efficiencies of colour, COD and turbidity by FeSO4 – Al2(SO4)3 were 87%, 73.1% and 94.1% correspondingly. It was indicated that PAM significantly reduced the turbidity of wastewater, however it virtually did not increase the efficiencies of colour and COD reduction. Furthermore, the coagulation processes using PAM usually produces a mount of sludge which is hard to be deposited.


1999 ◽  
Vol 40 (8) ◽  
pp. 229-236 ◽  
Author(s):  
F. Fdz-Polanco ◽  
M. D. Hidalgo ◽  
M. Fdz-Polanco ◽  
P. A. García Encina

In the last decade Polyethylene Terephthalate (PET) production is growing. The wastewater of the “Catalana de Polimers” factory in Barcelona (Spain) has two main streams of similar flow rate, esterification (COD=30,000 mg/l) and textile (COD=4000 mg/l). In order to assess the anaerobic treatment viability, discontinuous and continuous experiments were carried out. Discontinuous biodegradability tests indicated that anaerobic biodegradability was 90 and 75% for esterification and textile wastewater. The textile stream revealed some tendency to foam formation and inhibitory effects. Nutrients, micronutrients and alkali limitations and dosage were determined. A continuous lab-scale UASB reactor was able to treat a mixture of 50% (v) esterification/textile wastewater with stable behaviour at organic loading rate larger than 12 g COD/l.d (0.3 g COD/g VSS.d) with COD removal efficiency greater than 90%. The start-up period was very short and the recuperation after overloading accidents was quite fast, in spite of the wash-out of solids. From the laboratory information an industrial treatment plant was designed and built, during the start-up period COD removal efficiencies larger than 90% and organic loading rate of 0.6 kg COD/kg VSS.d (5 kg COD/m3.d) have been reached.


1997 ◽  
Vol 36 (6-7) ◽  
pp. 125-132 ◽  
Author(s):  
Toshiya Komatsu ◽  
Jun Shinmyo ◽  
Kiyoshi Momonoi

Tetrachloroethylene (PCE) is one of the most common groundwater contaminants in Japan. PCE can be completely dechlorinated to ethylene (ETY) and ethane (ETA) by anaerobic microorganisms in the presence of a suitable electron donor. This study was conducted to examine the feasibility of using an anaerobic filter for the degradation of PCE in a bioremediation process. Laboratory-scale anaerobic filters were operated at 25°C using ethanol as the electron donor. Rapid start-up of the reactors was achieved by using anaerobic completely PCE-dechlorinating enrichment cultures as the inoculum. During the continuous operating periods, low concentrations (2.8 mg/L) of PCE were almost completely dechlorinated to ETY and ETA at hydraulic retention times of 49-15 hours with 100 mgCOD/L of ethanol. PCE concentrations as high as 80 mg/L was dechlorinated to ETY with a relatively low supply (200 mgCOD/L) of ethanol. Results of this study suggest that the anaerobic filter system is a feasible bioremediation process for the cleanup of groundwater which is contaminated by chlorinated ethylenes.


2021 ◽  
Vol 11 (2) ◽  
pp. 510
Author(s):  
Elza R. Mikheeva ◽  
Inna V. Katraeva ◽  
Andrey A. Kovalev ◽  
Dmitriy A. Kovalev ◽  
Alla N. Nozhevnikova ◽  
...  

This article presents the results of the start-up of continuous production of biohydrogen from cheese whey (CW) in an anaerobic filter (AF) and anaerobic fluidized bed (AFB) with a polyurethane carrier. Heat and acid pretreatments were used for the inactivation of hydrogen-scavengers in the inoculum (mesophilic and thermophilic anaerobic sludge). Acid pretreatment was effective for thermophilic anaerobic sludge to suppress methanogenic activity, and heat treatment was effective for mesophilic anaerobic sludge. Maximum specific yields of hydrogen, namely 178 mL/g chemical oxygen demand (COD) and 149 mL/g COD for AFB and AF, respectively, were obtained at the hydraulic retention time (HRT) of 4.5 days and organic load rate (OLR) of 6.61 kg COD/(m3 day). At the same time, the maximum hydrogen production rates of 1.28 and 1.9 NL/(L day) for AF and AFB, respectively, were obtained at the HRT of 2.02 days and OLR of 14.88 kg COD/(m3 day). At the phylum level, the dominant taxa were Firmicutes (65% in AF and 60% in AFB), and at the genus level, Lactobacillus (40% in AF and 43% in AFB) and Bifidobacterium (24% in AF and 30% in AFB).


Author(s):  
Ahmad Zuhairi Abdullah ◽  
Mohamad Hakimi Ibrahim ◽  
Mohd. Omar Ab. Kadir

Kertas kerja ini membincangkan tentang kecekapan penuras cucur dalam merawat supernatan kumbahan kilang kelapa sawit (POME). Supernatan POME diperoleh menerusi dua jenis perawatan. Dalam perawatan 1, pengendapan graviti digunakan untuk menyingkir pepejal boleh mendak. Perawatan 2 digunakan untuk menyingkir pepejal boleh mendak dan gumpalan partikal dengan menggunakan 350 ppm alum. Influen dialurkan secara titisan pada biojisim yang terlekat pada penyokong pepejal rawak PVC setinggi 1 m. Penuras cucur berupaya menyingkir lebih daripada 90.0% dari keperluan oksigen biologi (BOD) dan keperluan oksigen kimia (COD) di bawah 1 m3/m2–hari. Pada 2.53 m3/m2–hari, influen dengan Perawatan 1 menghasilkan kecekapan penyingkiran COD sebanyak 40.3%, berbanding 83.1% bila Perawatan 2 digunakan. Perkara ini berlaku berikutan penyingkiran bahan organik tak boleh resap semasa Perawatan 2. Kecekapan penyingkiran menurun dengan meningkatnya bebanan hidraulik kerana wujudnya kelemahan dalam hidrolisis bahan tak boleh resap kepada substratum larut. Dengan edaran semula (α=1), penyingkiran BOD dan COD yang lebih tinggi dicapai di bawah 7 m3/m2–hari. Pencapaian ini disebabkan oleh bebanan organik yang lebih rendah serta pergedaran semula enzim dan biojisim yang aktif kepada sistem. Perawatan 2 menghasilkan enap cemar yang lebih tinggi kerana penukaran substratum boleh larut kepada biojisim tak boleh larut. Hidrolisis bahan organik tak boleh resap didapati berlaku secara aktif pada bahagian atas penuras cucur sementara bahagian bawahnya cenderung mengoksidakan substratum organik. Kata kunci: POME, turas cucur, bahan organik bolehresap, penggumpalan, alir semula This paper discusses the efficiency of a trickling filter to treat Palm Oil Mill Effluent (POME) supernatants. POME supernatants were obtained via two treatments. In Treatment 1, gravity sedimentation was used to remove settleable solids. In Treatment 2, both settleable solids and colloidal particles were removed using 350 ppm of alum. The influents were allowed to trickle over biomass attached to 1 m high random PVC solid support. Below 1 m3/m2–day, the filter demonstrated Biological Oxygen Demand (BOD) and Chemical Oxygen Demand (COD) removal efficiencies of more than 90.0%. At 2.53 m3/m2–day, the influent with Treatment 1 gave a COD removal efficiency of 40.3%, but increased to 83.1% when the influent with Treatment 2 was used. This was ascribed to the removal of non–diffusible organics during Treatment 2. The removal efficiencies decreased with an increase in hydraulic loading due to limitations in the hydrolysis of non–diffusibles into soluble substrates. With recirculation (α=1), higher BOD and COD removals were achieved below 7.0 m3/m2–day, attributed to lower organic loading and the recycling of active enzyme and biomass to the system. The influent with Treatment 2 demonstrated higher sludge production due to higher conversion of soluble substrates into insoluble biomass. Hydrolysis of non–diffusible organics mainly took place at upper reaches of the filter column while lower reaches were involved in oxidizing the organic subtrates. Key words: POME, trickling filter, diffusible organic, coagulation, recirculation


2018 ◽  
Vol 2017 (3) ◽  
pp. 661-666
Author(s):  
Xu Zeng ◽  
Jun Liu ◽  
Jianfu Zhao

Abstract Catalytic wet oxidation of high concentration pharmaceutical wastewater with Fe3+ as catalyst was carried out in a batch reactor. Results showed that the degradation of pharmaceutical wastewater was enhanced significantly by Fe3+. The effects of reaction parameters, such as the catalyst dose, reaction temperature, time, and initial oxygen pressure, were discussed. The chemical oxygen demand (COD) removal increased with the increases of catalyst dose, temperature, time and oxygen supply. With the initial COD 34,000–35,000 mg/L, approximately 70% COD removal can be achieved under the conditions of catalyst 1.0 g and oxygen pressure 1.0 MPa at 250 °C after 60 min. The results of kinetic studies showed that two reaction steps existed in this oxidation process, which followed an apparent first-order rate law. This process provides an effective approach for the pretreatment of high concentration pharmaceutical wastewater.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Ali Jalilzadeh ◽  
Ramin Nabizadeh ◽  
Alireza Mesdaghinia ◽  
Aliakbar Azimi ◽  
Simin Nasseri ◽  
...  

A systematic model for chemical oxygen demand (COD) removal using the ANAMMOX (Anaerobic AMMonium OXidation) process was provided based on an experimental design. At first, the experimental data was collected from a combined biological aerobic/anaerobic reactor. For modelling and optimization of COD removal, the main parameters were considered, such as COD loading, ammonium, pH, and temperature. From the models, the optimum conditions were determined as COD 97.5 mg/L, ammonium concentration equal to 28.75 mg-N/L, pH 7.72, and temperature 31.3°C. Finally, the analysis of the optimum conditions, performed by the response surface method, predicted COD removal efficiency of 81.07% at the optimum condition.


Sign in / Sign up

Export Citation Format

Share Document