A Study of Drilling and Borehole Geophysics in The Geothermal Potential Area of The Mae Chan Hot Springs in Northern Thailand

Author(s):  
S. Siricharoensri ◽  
R. Onsibut ◽  
S. Siricharoensri ◽  
P. Watkrathok
Geothermics ◽  
1979 ◽  
Vol 8 (2) ◽  
pp. 85-95 ◽  
Author(s):  
S.M. Barr ◽  
B. Ratanasathien ◽  
D. Breen ◽  
T. Ramingwong ◽  
S. Sertsrivanit

Author(s):  
Sutthipong Taweelarp ◽  
Supanut Suntikoon ◽  
Thaned Rojsiraphisal ◽  
Nattapol Ploymaklam ◽  
Schradh Saenton

Scaling in a geothermal piping system can cause serious problems by reducing flow rates and energy efficiency. In this work, scaling potential of San Kamphaeng (SK) geothermal energy, Northern Thailand was assessed based on geochemical model simulation using physical and chemical properties of hot spring water. Water samples from surface seepage and groundwater wells, analyzed by ICP-OES and ion chromatograph methods for chemical constituents, were dominated by Ca-HCO3 facies having partial pressure of carbon dioxide of 10–2.67 to 10–1.75 atm which is higher than ambient atmospheric CO2 content. Surface seepage samples have lower temperature (60.9°C) than deep groundwater (83.1°C) and reservoir (127.1°C, based on silica geothermometry). Geochemical characteristics of the hot spring water indicated significant difference in chemical properties between surface seepage and deep, hot groundwater as a result of mineral precipitation along the flow paths and inside well casing. Scales were mainly composed of carbonates, silica, Fe-Mn oxides. Geochemical simulations based on multiple chemical reaction equilibria in PHREEQC were performed to confirm scale formation from cooling and CO2-degassing processes. Simulation results showed total cumulative scaling potential (maximum possible precipitation) from 267-m deep well was estimated as 582.2 mg/L, but only 50.4% of scaling potential actually took place at SK hot springs. In addition, maximum possible carbon dioxide outflux to atmosphere from degassing process in SK geothermal field, estimated from the degassing process, was 6,960 ton/year indicating a continuous source of greenhouse gas that may contribute to climate change. Keywords: Degassing, Geochemical modeling, PHREEQC, San Kamphaeng Hot Springs, Scaling


2007 ◽  
Vol 60 (3) ◽  
pp. 456-466 ◽  
Author(s):  
Diane Purcell ◽  
Udomluk Sompong ◽  
Lau Chui Yim ◽  
Timothy G. Barraclough ◽  
Yuwadee Peerapornpisal ◽  
...  

2020 ◽  
Vol 5 (1) ◽  
pp. 45
Author(s):  
Jeferson Polii ◽  
Alfrie Musa Rampengan

Geothermal energy depends on volcanic regions or plate subduction. Indonesia has geothermal potential due to the meeting of 3 (three) large plates. North Sulawesi is one of the areas located in the ring of fire. Some areas in the Minahasa Regency, North Sulawesi province, were targeted for research because they have manifestations of geothermal such as hot pools, steaming ground, mud pools, and other manifestations. The research location is divided into 3 (three) locations around the Lahendong geothermal area, namely the Lahendong pine forest, the Toraget hot air area, and the hot springs in the village of Totolan. The results of sample and ploting tests in ternary diagrams show that all three geothermal manifestations have sulfuric acid type fluids. This type of geothermal fluid has a high SO4 content, while HCO3 and Cl values ​​are low. Hot springs that have a type of sulfuric acid occur in active volcanic regions. This is supported by the lithology of three areas of manifestation which are composed of basalt resulting from volcanic rocks.


Botanica ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. 69-86 ◽  
Author(s):  
Chayakorn Pumas ◽  
Supattira Pruetiworanan ◽  
Yuwadee Peerapornpisal

AbstractDiversity of hot spring diatoms in northern Thailand was studied. Forty-six diatom species were identified in eight localities. The dominant species according to high relative abundance were Diatomella balfouriana (41.7%), Achnanthidium exiguum (20.9%) and Anomoeoneis sphaerophora (11.2%). Moreover, Caloneis molaris, Craticula acidoclinata, Navicula subrhynchocephala and Pinnularia saprophila were recorded as species new to Thailand. The NMDS ordination revealed variation in species composition of eight different hot springs and correlation with the existing environmental variables. Silicon dioxide (SiO2), pH, conductivity, water temperature and total hardness were statistically significant factors affecting relative abundance of Achnanthidium exiguum, Amphora montana, Caloneis aequatorialis, Cocconeis placentula, Craticula cuspidata, Diploneis elliptica, Gomphonema affine, Gomphonema augur, Halamphora fontinalis, Planothidium lanceolatum, Pinnularia abaujensis, Sellaphora lanceolata and Stauroneis anceps.


2019 ◽  
Vol 8 (1) ◽  
pp. 30-34
Author(s):  
Eliyani Eliyani ◽  
Muhammad Isa ◽  
Khairi Khairi ◽  
Muhammad Rusdi

Gunung api Leumo Matee dan Seumeuregoh, Jaboi Sabang memiliki potensi energi panas bumi sangat besar. Hal ini ditandai dengan adanya manifestasi yang muncul di permukaan seperti uap panas, fumarol dan sumber air panas. Oleh karena itu, perlu dikaji lebih dalam dan menyeluruh untuk mendapatkan informasi yang detail, terutama parameter suhu dan karakteristik batuan/mineral. Sebuah penelitian telah dilakukan untuk kajian geokimia terutama analisis kimia fluida panas bumi. Pendekatan untuk menentukan karakteristik fluida kimia panas bumi dilakukan dengan metode geotermometer untuk mengukur kandungan air (SiO2) dan gas (Na-K) serta konsentrasi anion dan kation. Berdasarkan data pengamatan lapangan dan hasil uji laboratorium yang sudah terstandarisasi menunjukkan bahwa suhu bawah permukaan untuk fluida cair adalah 228oC dan untuk gas sebesar 220oC. Hasil pengujian sampel fluida panas bumi menunjukkan bahwa manifestasi panas bumi Kawah I dan Kawah IV daerah Jaboi, Sabang sangat prospek untuk dikembangkan. Informasi fluida ini menjadi salah satu parameter dalam pengembangan potensi panas bumi. Oleh karena itu sangat penting ditindaklanjuti karena dapat menjawab kebutuhan energi yang ramah lingkungan dan energi terbarukan.  The Volcano Leumo Matee and Seumeuregoh, Jaboi Sabang have enormous geothermal energy potential. This is characterized by the presence of surface manifestations such as hot steam, fumaroles and hot springs. Therefore, it needs to be studied more deeply and thoroughly to obtain detailed information, especially the temperature and rock/mineral characteristics. A study has been carried out for geochemical studies, especially chemical analysis of geothermal fluids. The approach to determine the characteristics of the geothermal chemical fluid is carried out by geothermometry to measure the water content (SiO2) and gas (Na-K) as well as the concentration of anions and cations. Based on field observations and standardized laboratory tests, the subsurface temperature for liquid fluids is 228oC and for gases of 220oC. The results of testing geothermal fluid samples show that the geothermal manifestations of Kawah I and Kawah IV Jaboi, Sabang are very prospects to be developed. This fluid information is one of the parameters in developing geothermal potential. Therefore, it is very important to follow up because it can answer the needs of environmentally friendly energy and renewable energy. Keywords: Volcano, Geothrmometry, jaboi, Sabang, Temperature


2020 ◽  
Vol 20 (6) ◽  
pp. 1347
Author(s):  
Satrio Satrio ◽  
Rasi Prasetio ◽  
Boy Yoseph Cahya Sunan Sakti Syah Alam ◽  
Teuku Yan Waliyana Muda Iskandarsyah ◽  
Faizal Muhammadsyah ◽  
...  

The presence of several hot springs in Sembalun – Rinjani, East Lombok, West Nusa Tenggara is an indicator of geothermal potential in the area. This study aims to determine the characteristics of hot springs and cold springs and also the geothermal potential in Sembalun – Rinjani area using isotopes and geochemistry methods. The result of d18O and d2H stable isotopes analysis shows that most of the hot springs are meteoric water. Except for Kalak hot spring, other hot springs are a mixing product of meteoric water and andesitic water, with meteoric water composition between 64 to 87%. While 14C radioisotope suggests that the age of hot springs in the Sembalun area is about 10,000–12,000 years BP, the surrounding cold springs are mostly Modern except Jorong cold spring. The results of gas analysis (He, Ar, and Ne) also suggest the same origin of geothermal fluid, i.e., meteoric water origin. Based on chemical composition, Kalak hot spring is plotted as sulfate type water, while Sebau hot spring is plotted near mature water composition but not representing reservoir fluid due to its relatively low temperature and high Mg content. Na/K geothermometer calculation from Sembalun area shows that subsurface temperature is varied between 111-161 °C, while from Rinjani hot springs indicates higher subsurface temperature, i.e., 250-260 °C. It is estimated that reservoir fluid has high TDS with chloride content up to 4000 mg/L.


Geophysics ◽  
1980 ◽  
Vol 45 (2) ◽  
pp. 312-322 ◽  
Author(s):  
C. L. Long ◽  
H. E. Kaufmann

Audio‐magnetotelluric (AMT) and telluric current soundings were made in a study of the geothermal potential of the area between Weiser, Idaho and Vale, Oregon, during the spring and fall of 1974. The electrical surveys covered an area on the western edge of the Snake River plain of approximately [Formula: see text] with 89 AMT and 31 telluric current stations at approximately 6-km spacings. The AMT method used the natural electromagnetic (EM) field from 7.5 Hz to 6.7 kHz (10 frequencies) with two VLF radio sources at 10.2 and 18.6 kHz, while the telluric method utilized geomagnetic micropulsations, band‐limited from 0.02 to 0.1 Hz. Maps were compiled using both methods to outline major high‐ and low‐resistivity features. Major high‐resistivity zones appear to trend northwest on the AMT apparent resistivity maps. These zones parallel structural trends between Vale and Weiser. The lowest apparent resistivities are associated with the known geothermal hot springs in the Vale and Weiser areas. The telluric ratio map shows lowest values at the eastern side of the area, and a low trend extending through Vale and to the northeast.


Geophysics ◽  
1984 ◽  
Vol 49 (8) ◽  
pp. 1327-1337 ◽  
Author(s):  
Laura F. Serpa ◽  
Kenneth L. Cook

Aeromagnetic and gravity surveys were conducted in the Black Rock Desert, Utah to assess the geothermal potential of the Meadow‐Hatton Known Geothermal Resource Area (KGRA). The presence of basalt flows less than 1000 yr old and a 400 000 yr old rhyolite dome suggested that a hot intrusive body, which should be detectable in both types of potential field data, may provide the heat source for hot springs in the study area. A simultaneous inversion computer program was developed as part of this study to model these potential field data. The resulting models indicate hydrothermal alteration about the hot springs extending to a depth of approximately 1 km. Normal faults above a low‐angle detachment appear to reach a depth of approximately 4 km and provide a path for the circulation of groundwater in the area. No evidence for a buried igneous body was found in the study area, and it is therefore concluded that the migration of fluids along the deep faults is sufficient to account for the water temperatures estimated for the KGRA.


KnE Energy ◽  
2015 ◽  
Vol 2 (2) ◽  
pp. 141
Author(s):  
Oktoberiman . ◽  
Dimas Aji Ramadhan P ◽  
Fajar Rizki W ◽  
Rizal Tawakal A

<p>Insufficient of conventional energy production today in Indonesia, encouraging all elements to discover an alternative energy. Geothermal is one of big potential alternative energy in Indonesia regarding the conditon of geological setting in Indonesia which has 129 active volcanoes. Bantarkawung is located in the western of Mount Slamet where hot spring occured as geothermal manifestation. This indicate geothermal potential in that area. This research is aimed to identify geothermal potential that lies in bantarkawung using Fault Fracture Density (FFD), Geological Mapping and Geochemical analysis. Based on FFD analysis known that anomaly area is located at central and northeast of research area, and based on geological mapping known that area composed by mudstone unit and sandstone unit, water temperature of research area is 43 °C to 62 °C, by using geochemical analysis of major ions HCO3-,Cl-,S042- known that the type of hot water is bicarbonate water which characterized as an outflow zone of geothermal system. </p><p><strong>Keywords</strong>: Bantarkawung; FFD; geochemichal analysis; geothermal; hot springs</p>


Sign in / Sign up

Export Citation Format

Share Document