Hydrodynamic theory of magnetic fields due to electron currents in a straight wire

2013 ◽  
Vol 26 (3) ◽  
pp. 438-449
Author(s):  
Benjamin B. Dayton

In previous articles in this journal, the author presented hydrodynamic models of the electron as a sink and the positron as a source for the continuous flow of a primordial incompressible ideal fluid from sources to sinks in ordinary three-dimensional space generating the electrostatic field. The return flow from a sink to a source occurs through a wormhole tube (called an ether string) in four-dimensional space-time. It was assumed that the finite core of a primitive electron and the core of a primitive positron would be trapped at the boundary surface of the cylindrical core of a linear vortex in the fluid. The interaction between the flow component into the electron sink and the vortex field would wind the ether string linking the electron and positron cores into a helix (called an ether spring) located at the surface of the vortex core. Loosely bound electrons in metal atoms can migrate through the lattice of a metal crystal while still remaining linked by an ether spring to the positron in the proton in the original atomic nucleus. When a piece of metal is broken into two or more parts, some of the free electrons in each part may remain linked to protons in another part. These electrons are referred to as externally linked conduction electrons. When such electrons are induced to move along a straight wire, a magnetic field is generated around the wire. The magnetic field is due to regions of vorticity in the primordial fluid around the wire. These regions result from a criss-crossing of fixed and moving ether springs. The fixed ether springs link conduction electrons in metal objects outside the wire to positive ions in the wire. The axes of ether springs linked to the moving conduction electrons in the wire are straight and inclined forward through a small Lorentz angle so that they cross over the fixed straight ether springs linked to positive ions in the wire. It can be shown that the overlapping ether springs produce regions with a vorticity with vorticity vectors tangent to circles centered on the straight wire axis. Alternating currents will cause these regions of vorticity to move outward away from the wire corresponding to radio waves.

2018 ◽  
Vol 173 ◽  
pp. 03019
Author(s):  
Eugene Perepelkin ◽  
Aleksandr Tarelkin

A magnetostatics problem arises when searching for the distribution of the magnetic field generated by magnet systems of many physics research facilities, e.g., accelerators. The domain in which the boundary-value problem is solved often has a piecewise smooth boundary. In this case, numerical calculations of the problem require consideration of the solution behavior in the corner domain. In this work we obtained an upper estimation of the magnetic field growth using integral formulation of the magnetostatic problem and propose a method for condensing the differential mesh near the corner domain of the vacuum in the three-dimensional space based on this estimation.


2010 ◽  
Vol 28 (3) ◽  
pp. 743-751 ◽  
Author(s):  
V. Pohjola ◽  
E. Kallio

Abstract. We have developed a fully kinetic electromagnetic model to study instabilities and waves in planetary plasma environments. In the particle-in-a-cell (PIC) model both ions and electrons are modeled as particles. An important feature of the developed global kinetic model, called HYB-em, compared to other electromagnetic codes is that it is built up on an earlier quasi-neutral hybrid simulation platform called HYB and that it can be used in conjunction with earlier hybrid models. The HYB models have been used during the past ten years to study globally the flowing plasma interaction with various Solar System objects: Mercury, Venus, the Moon, Mars, Saturnian moon Titan and asteroids. The new stand-alone fully kinetic model enables us to (1) study the stability of various planetary plasma regions in three-dimensional space, (2) analyze the propagation of waves in a plasma environment derived from the other global HYB models. All particle processes in a multi-ion plasma which are implemented on the HYB platform (e.g. ion-neutral-collisions, chemical processes, particle loss and production processes) are also automatically included in HYB-em model. In this brief report we study the developed approach by analyzing the propagation of high frequency electromagnetic waves in non-magnetized plasma in two cases: We study (1) expansion of a spherical wave generated from a point source and (2) propagation of a plane wave in plasma. The analysis shows that the HYB-em model is capable of describing these space plasma situations successfully. The analysis also suggests the potential of the developed model to study both high density-high magnetic field plasma environments, such as Mercury, and low density-low magnetic field plasma environments, such as Venus and Mars.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5675
Author(s):  
Christin Bald ◽  
Gerhard Schmidt

The knowledge of the exact position and orientation of a sensor with respect to a source (distribution) is essential for the correct solution of inverse problems. Especially when measuring with magnetic field sensors, the positions and orientations of the sensors are not always fixed during measurements. In this study, we present a processing chain for the localization of magnetic field sensors in real time. This includes preprocessing steps, such as equalizing and matched filtering, an iterative localization approach, and postprocessing steps for smoothing the localization outcomes over time. We show the efficiency of this localization pipeline using an exchange bias magnetoelectric sensor. For the proof of principle, the potential of the proposed algorithm performing the localization in the two-dimensional space is investigated. Nevertheless, the algorithm can be easily extended to the three-dimensional space. Using the proposed pipeline, we achieve average localization errors between 1.12 cm and 6.90 cm in a localization area of size 50cm×50cm.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 775
Author(s):  
Paul-Benjamin Eißman ◽  
Stefan Odenbach ◽  
Adrian Lange

Three-dimensional calculations of the meniscus of a magnetic fluid placed around a current carrying vertical and cylindrical wire are presented. Based on the material properties of experimentally used magnetic fluids, the numerically determined menisci are compared with the experimentally measured ones reported by May. The comparison is made for a linear law of magnetisation as well as for the experimentally measured nonlinear magnetisation curve. Up to moderate strengths of the applied current ( I < = 45 A), i.e., up to moderate strengths of the magnetic field close to the wire, the calculated profiles agree satisfyingly with the experimentally measured ones for a linear as well as for a nonlinear law of magnetisation. At a great strength of the applied current ( I = 70 A), i.e., at a large strength of the magnetic field close to the wire, the agreement is less good than in the range up to moderate strengths. Our analysis revealed that the numerically assumed isothermal conditions are not present in the experiment, particularly at the great strength of the applied current. A control of the temperature in the experiment and the implementation of a coupled thermal model in the numerics are considered the most relevant future steps for an improved agreement.


2021 ◽  
Vol 91 (2) ◽  
pp. 275
Author(s):  
И.В. Янилкин ◽  
А.И. Гумаров ◽  
А.М. Рогов ◽  
Р.В. Юсупов ◽  
Л.Р. Тагиров

Niobium films of 4–100 nm thickness were synthesized on a silicon substrate under ultrahigh vacuum conditions. Measurements of electrical resistance showed a high temperature of the superconducting transition Tc, in the range of 4.7–9.1 K, and extremely small transition widths ΔTc in the range of 260–11 mK. The dependences of Tc and ΔTc on the magnetic field were studied, and superconducting coherence lengths and mean free paths of the conduction electrons were determined for different thicknesses of the synthesized films. A specific effect of the magnetic field on ΔTc was found, which reveals a transition from three-dimensional to two-dimensional superconductivity at thicknesses below 10 nm. The dependences of Tc and ΔTc on the films thickness and the magnitude of the magnetic field are discussed in the framework of existing concepts of superconductivity in thin films of superconducting metals.


2012 ◽  
Vol 152-154 ◽  
pp. 952-957
Author(s):  
Hua Fang Huang ◽  
Yi Zhong Wang ◽  
Zong Guo Zhou ◽  
Yong Hua Chen

When the magnetic articulated needle is inserting, the magnetic field which can produce the magnetic force of variable direction is required in order to implement the magnetic navigation in three-dimensional space. The paper puts forward a method for generating three-dimensional magnetic field based on the rotaion and translation of multiple permanent magnets. In this method, multiple permanent magnets form a circumference array. Every permanent magnet can rotate around the spin axis of itself in the array plane and move along the direction vertical to the array plane. Thus, in the array center, a magnetic fied which can produce the uniform magnetic flux density is obtained. The direction of magnetic fied is controllable in three-dimensional space and the magnitude of magnetic flux density is variable in a certain range. The simulations by ANSYS verify the feasibility of the proposed method.


Author(s):  
Ted Janssen ◽  
Gervais Chapuis ◽  
Marc de Boissieu

Physical properties of aperiodic crystals present some theoretical challenges due to the lack of three-dimensional periodicity. For the description of the structure there is a periodic representation in higher-dimensional space. For physical properties, however, this scheme cannot be used because the mapping between interatomic forces and the high-dimensional representation is not straightforward. In this chapter methods are described to deal with these problems. First, the hydrodynamic theory of aperiodic crystals and then the phonons and phasons theory are developed and illustrated with some examples. The properties of electrons in aperiodic crystals are also presented. Finally, the experimental findings of phonon and phason modes for modulated and quasicrystals are presented. The chapter also discusses diffuse scattering, the Debye–Waller factor, and electrical conductivity.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Wenhou Shen ◽  
Zhihua Zhao ◽  
Gexue Ren ◽  
Jiapeng Liu

The arresting dynamics of the aircraft on the aircraft carrier involves both a transient wave propagation process in rope and a smooth decelerating of aircraft. This brings great challenge on simulating the whole process since the former one needs small time-step to guarantee the stability, while the later needs large time-step to reduce calculation time. To solve this problem, this paper proposes a full-scale multibody dynamics model of arresting gear system making use of variable time-step integration scheme. Especially, a kind of new cable element that is capable of describing the arbitrary large displacement and rotation in three-dimensional space is adopted to mesh the wire cables, and damping force is used to model the effect of hydraulic system. Then, the stress of the wire ropes during the landing process is studied. Results show that propagation, reflection, and superposition of the stress wave between the deck sheaves contribute mainly to the peak value of stress. And the maximum stress in the case of landing deviate from the centerline is a little bit smaller than the case of landing along centerline. The multibody approach and arresting gear system model proposed here also provide an efficient way to design and optimize the whole mechanism.


Sign in / Sign up

Export Citation Format

Share Document