The quantum electrodynamics physical (QED-P) theory to complement quantum electrodynamics (QED)

2021 ◽  
Vol 34 (1) ◽  
pp. 17-27
Author(s):  
James H. Wilson

The electronic and muonic hydrogen energy levels are calculated very accurately [M. L. Eides, H. Grotch, and V. Shelyuto, Phys. Rep. 342, 63 (2001)] in Quantum Electrodynamics (QED) by coupling the Dirac Equation four vector c(α, I) current covariantly with the external electromagnetic (EM) field four vector in QED’s Interactive Representation. While QED has been extraordinarily successful computationally, it presents no physical description of the electron, or other charged leptons. The QED-Physical (QED-P) theory presented in this paper is equivalent to QED in that it is based only on the four-current c(α, I) that is the reason that QED is so accurate computationally. However, QED-P describes the electron geometrically through the internal time/coordinate operators derived directly from c(α, I) with no assumptions. QED-P’s internal coordinate operators define an electron Center of Charge (CoC) point vibrating rapidly in space and time in its unique vacuum, creating the current that produces the electron’s magnetic moment and spin, and eliminating the need for “intrinsic” properties. QED-P also cuts off the photon propagator in a natural way so that the electron self-energy is finite and ad hoc renormalization procedures are not necessary. The c α-Non Exclusion Principle states that, if QED accepts c(α, I) as the electron current operator because of the very accurate hydrogen energy levels calculated, then one must also accept the QED-P electron internal spatial and time coordinate operators (ISaTCO) derived directly from c(α, I) without any other assumptions. QED-P shows the electron to be in both spin states simultaneously, and it is the external EM field that forces the electron’s spin state to be measured up or down. QED-P describes the bizarre, and very different, situation illustrated in Fig. 1 when the electron and muon are located “inside” the spatially extended proton with their CoCs orbiting the proton at the speed of light in S energy states of hydrogen, shedding some insight into the proton radius puzzle. The electron only appears to be a point particle with intrinsic properties when observed/measured from the far field. The Dirac‐Maxwell‐Wilson Equations are derived directly from the electron ISaTCO, and its EM fields “look” like they are from a point particle in far field scattering experiments in the same way the electric field from a sphere with evenly distributed charge “e” looks like a point charge with the same charge in the far field (Gauss Law). A physical basis for Quantum Entanglement is derived that can be measured experimentally.

Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2572
Author(s):  
Yanfei Fan ◽  
Yan Liu ◽  
Hongyu Cui ◽  
Wen Wang ◽  
Qiaoyan Shang ◽  
...  

Strontium Titanate has a typical perovskite structure with advantages of low cost and photochemical stability. However, the wide bandgap and rapid recombination of electrons and holes limited its application in photocatalysis. In this work, a SrTiO3 material with surface oxygen vacancies was synthesized via carbon reduction under a high temperature. It was successfully applied for photocatalytic overall water splitting to produce clean hydrogen energy under visible light irradiation without any sacrificial reagent for the first time. The photocatalytic overall water splitting ability of the as-prepared SrTiO3-C950 is attributed to the surface oxygen vacancies that can make suitable energy levels for visible light response, improving the separation and transfer efficiency of photogenerated carriers.


1998 ◽  
Vol 31 (8) ◽  
pp. L337-L339 ◽  
Author(s):  
V M Shabaev ◽  
A N Artemyev ◽  
T Beier ◽  
G Soff

2017 ◽  
Vol 95 (4) ◽  
pp. 393-401 ◽  
Author(s):  
K. Wang ◽  
S. Li ◽  
R. Si ◽  
C.Y. Chen ◽  
J. Yan ◽  
...  

Energies, wavelengths, lifetimes, oscillator strengths, electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2) transition rates among the 42 fine structure levels belonging to the 3s23p4, 3s23p33d, and 3s3p5 configurations for S-like Fe and S-like ions with 41 ≤ Z ≤ 49 are calculated using the fully relativistic multiconfiguration Dirac–Fock (MCDF) method. In the calculations, contributions from correlations within the n = 6 complex, Breit interaction, and quantum electrodynamics effects are included. Detailed comparisons are made between the present results and the available experimental and other theoretical data. We found that our calculated energy levels generally agree within ≤0.5% with the experimentally compiled results, and the transition rates agree within ≤12% with other theoretical results for a majority of the transitions. These accurate theoretical data should be beneficial in fusion plasma research and astrophysical applications.


1987 ◽  
Vol 77 (4) ◽  
pp. 1274-1294
Author(s):  
R. W. Burger ◽  
T. Lay ◽  
L. J. Burdick

Abstract Attenuation models, with and without frequency dependence, have been developed through analysis of time-domain amplitude measurements and teleseismic spectral shape data from Pahute Mesa nuclear explosions. The time-domain analysis is based on a near-field to far-field amplitude comparison. The near-field amplitude information is incorporated in two parameterized explosion source models (Mueller-Murphy and Helmberger-Hadley) based on analyses of near-field data. The teleseismic amplitude observations are from a large data set of WWSSN short-period analog recordings. For the narrow-band time-domain data, the various source and attenuation models are indistinguishable. We utilize the spectral shape data in the 0.5- to 4-Hz band as a constraint on the source-attenuation models at higher frequencies, concluding that either source model, when convolved with the appropriate frequency-dependent Q model, can be consistent with both the near-field and far-field time-domain amplitudes and the spectral shape data. Given the trade-off between source and attenuation models and the similarity of the different source models in the 0.5- to 4-Hz band, it is difficult to prefer clearly one source model over the other. The Mueller-Murphy model is more consistent with surface wave amplitude measurements because of larger predicted long-period energy levels. Whether or not frequency dependence is included in the attenuation model, the value of t* near 1 Hz is about 1.0 sec (assuming the Mueller-Murphy source model) or 0.8 sec (assuming the Helmberger-Hadley source model). This 0.2 sec difference results from greater 1-Hz energy levels for the Mueller-Murphy source model. Adopting an average attenuation model, predicted amplitudes and yields are shown to be within the uncertainty of the data for all the events analyzed.


2021 ◽  
pp. 81-93
Author(s):  
Adrian P Sutton

As the size of a material decreases to the nanoscale its properties become size-dependent. This is the world of nanoscience and nanotechnology. At the nanoscale the crystal structure may change and thermodynamic quantities such as the melting point also change. Changes in the catalytic activity and colour of nanoparticles suspended in a liquid indicate changes to the electronic structure. Quantum dots have discrete energy levels that can be modelled with the particle-in-a-box model. Excitons may be created in them using optical illumination, and their decay leads to fluorescence with distinct colours. The classical and quantum origins of magnetism are discussed. The origin of magnetoresistance in a ferromagnet is described and related to the exclusion principle. The origin of the giant magnetoresistance effect and its exploitation in nanotechnology is outlined.


2020 ◽  
pp. 267-300
Author(s):  
Brian Cantor

The Fermi level is the maximum energy of the electrons in a material. Effectively there is a Fermi equation: EF = E max. This chapter examines the discrete electron energy levels in individual atoms as a consequence of the Pauli exclusion principle, the corresponding energy bands in a material composed of many atoms or molecules, and the way in which conductor, insulator and semiconductor materials depend on the position of the Fermi level relative to the energy bands. It explains: the concepts of electron mobility, mean free path and conductivity; the dielectric effect and capacitance; p-type, n-type, intrinsic and extrinsic semiconductors; and the behaviour of some simple microelectronic devices. Enrico Fermi was the son of a minor railway official in Rome. He had a meteoric scientific career in Italy, developing Fermi-Dirac statistics for the energies of fundamental fermion particles (such as electrons and protons), discovering the neutrino, and explaining the behaviour of different materials under bombardment from fast and slow neutrons. After initially joining Mussolini’s Fascist Party, he became unhappy at the level of anti-Semitism (his wife was Jewish) and left suddenly for America, immediately after receiving the Nobel Prize in Sweden. At Columbia and Chicago Universities and at Los Alamos National Labs, he played a key scientific role in developing controlled fission in an atomic pile, leading to the development of the atomic bomb towards the end of the Second World War, and the nuclear energy industry after the war.


2018 ◽  
Author(s):  
Israel Fried

The book presents a new conception on several physics topics. The initial values are non-relativistic quantities of subatomic particles which the values obtained in experiments are actually their relativistic reflection. The subjects in the book are presented in such order that each new topic is based on the development of its predecessor that explains where it stems from. The book presents methods of analyzing traditional physics concepts to extract hidden embedded information that reveals new variables which are combined with those known. The new formulas yield instant results that match experiments accurately. It presents discoveries like: The origin of electric charge of subatomic particle stem from its OAM. The electron's zero OAM at ground state, which is interpreted as the OAM is not necessarily a motion related is explained by the Schrödinger's Quantum Numbers obtained differently then solving the wave function! The electron's mass is expressing the square of its magnetic flux quantum. The proton, neutron and all baryons consist of three energy levels on which the quarks are orbiting. The third energy level of 80.5 GEV plays a major role at the weak decaying force while it host charged mesons that are emitted out thru a W boson that acquires the level's energy. Baryons beyond the proton and neutron are a composition of a down and up quarks at the first and second energy levels, plus quarks in a bound state composition of charged bosons positioned at their third energy level, hence bypassing the Pauli Exclusion Principle restriction. The OAM of the orbiting quarks are a third or two thirds of the reduced Planck constant. The proton's missing spin stems from the contributions of the quark's OAM. The Electron is a bound state composition of negative Pi meson and electron's neutrino. Electrons in confined space are going through a process named "spin-charge separation", validated by an experiment conducted at Cambridge and Birmingham universities.


Science ◽  
1964 ◽  
Vol 143 (3612) ◽  
pp. 1324-1325
Author(s):  
W. S. Porter

Author(s):  
I. V. Minin ◽  
O. V. Minin

The scattered light by various dielectric particles in atmosphere give information about the type of molecules and particles and their location, which are important to definition of propagation limitations through atmospheric and space weather variations, crisis communications, etc. Although these investigations explain far field properties of disturbed radiations, the solution of the physical problem requires simulations of the interactions in near-field. It has been shown that strongly localized EM field near the surface of single dielectric particle may be form by non-spherical and non-symmetrical mesoscale particles both as in transmitting as in reflection mode. It was also shown that the main lobe is narrower in case of 3 cube chain than single cube in far field, but there are many side-scattering lobes. It was mentioned that unique advantages provided by mesoscale dielectric photonic crystal based particles with three spatial dimensions of arbitrary shape allow developing a new types of micro/nano-probes with subwavelength resolution for ultra compact spectrometer-free sensor for on board a spacecraft or a plane.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Dhia Elhak Salhi ◽  
Soumaya Manai ◽  
Sirine Ben Nasr ◽  
Haikel Jelassi

Abstract Energy levels, wavelengths, weighted oscillator strengths, transition probabilities and lifetimes are calculated for all levels of 1s 2 and 1snl (n = 2–6) configurations of He-like cadmium ion (Cd XLVII). The calculations were carried out using three codes GRASP2018, FAC and AMBiT in order to provide theoretically the most accurate data. Transition probabilities are reported for all the E1, E2, M1 and M2 transitions. Breit interactions and quantum electrodynamics effects are included in the RCI calculations. Comparisons were made with other calculations and a good agreement was found which confirms the reliability of our results. We present some missing data for the He-like cadmium in this paper for the first time.


Sign in / Sign up

Export Citation Format

Share Document