BIOMECHANICAL ANALYSIS OF THE ELBOW JOINT LOADING DURING PUSH-UP

2008 ◽  
Vol 20 (04) ◽  
pp. 197-204 ◽  
Author(s):  
Pei-Hsi Chou ◽  
Shu-Zon Lou ◽  
Shen-Kai Chen ◽  
Hsin-Chieh Chen ◽  
Tsung-Hsien Wu ◽  
...  

The purpose of this study was to investigate the static and dynamic forces within the joints during push-up loading of the upper extremity. Ten healthy male students volunteered for this study. They were asked to complete six sets of push-ups in five different hand positions. The Expert Vision Motion Analysis System with six CCD cameras, and a Kistler force plate was used to measure the relative joint position and ground reaction force. Hand position was found to have a statistically significant effect on the axial force. The maximum axial force decreased from "normal" when hands were placed "apart" (45.0% BW, p = 0.012) or "superior" (44.5% BW, p = 0.01). Hand position had a significant effect on the flexion moment of the elbow joint. A greater reduction of flexion torque at 997.3 N-cm (p = 0.001) was experienced with hands "apart." Greater flexion torque existed throughout the cycle with hands "together" and equaled 2301.4 N-cm (p = 0.002). This study provides information about the kinematic and kinetic patterns of the upper extremities, and how hand position affects intersegmental loading. Attention must be given to the valgus torque encountered during push-up exercises. Patients with medial collateral ligament repair and total elbow arthroplasty should be protected from such exercises immediately post-treatment.

2007 ◽  
Vol 342-343 ◽  
pp. 621-624
Author(s):  
Hyeon Ki Choi ◽  
Si Yeol Kim ◽  
Won Hak Cho

We investigated the relationship between kinematic and kinetic characteristics of foot joints resisting ground reaction force (GRF). Passive elastic characteristics of joint were obtained from the experiment using three cameras and one force plate. The relationship between joint angle and moment was mathematically modeled by using least square method. The calculated ranges of motion were 7o for TM joint, 4o for TT joint and 20o for MP joint. With the model that relates joint angle and plantar pressure, we could get the kinematic data of the joints which are not available from conventional motion analysis. The model can be used not only for biomechanical analysis which simulates gait but also for the clinical evaluations.


1993 ◽  
Vol 26 (6) ◽  
pp. 625-632 ◽  
Author(s):  
Margaret J. donkers ◽  
Kai-Nan An ◽  
Edmund Y.S. Chao ◽  
Bernard F. Morrey
Keyword(s):  

2007 ◽  
Vol 353-358 ◽  
pp. 2179-2182 ◽  
Author(s):  
Jae Ok Lee ◽  
Young Shin Lee ◽  
Se Hoon Lee ◽  
Young Jin Choi ◽  
Soung Ha Park

The foot plays an important role in supporting the body and keeping body balance. An abnormal walking habit breaks the balance of the human body as well as the function of the foot. The foot orthotics which is designed to consider biomechanics effectively distributes the load of the human body on the sole of the foot. In this paper, gait analysis is performed for subjects wearing the orthotics. In this study, three male subjects were selected. The experimental apparatus consists of a plantar pressure analysis system and digital EMG system. The gait characteristics are simulated by ADAMS/LifeMOD. The COP (Center of Pressure), EMG and ground reaction force were investigated. As a result of gait analysis, the path of COP was improved and muscle activities were decreased with orthotics on the abnormal walking subjects.


2017 ◽  
Vol 56 (1) ◽  
pp. 51-59 ◽  
Author(s):  
Roman Farana ◽  
Daniel Jandacka ◽  
Jaroslav Uchytil ◽  
David Zahradnik ◽  
Gareth Irwin

AbstractThe importance of technique selection on elbow injury risk has been identified for the key round off skill in female gymnastics, with a focus on the second contact limb. The aim of this study was to shift the focus to the first contact limb and investigate the biomechanical injury risk during parallel and T-shape round-off (RO) techniques. Seven international-level female gymnasts performed 10 trials of the RO to back-handspring with parallel and T-shape hand positions. Synchronized kinematic (3D motion analysis system; 247 Hz) and kinetic (two force plates; 1235 Hz) data were collected for each trial. The t-test with effect size statistics determined differences between the two techniques. No significant differences were found for vertical, anterior posterior and resultant ground reaction force, elbow joint kinematics and kinetics. Specifically, the results highlighted that change in technique in RO skills did not influence first contact limb elbow joint mechanics and therefore, injury risk. The findings of the present study suggest the injury potential of this skill is focused on the second limb during the parallel technique of this fundamental gymnastic skill.


2008 ◽  
Vol 16 (2) ◽  
pp. 171-187 ◽  
Author(s):  
Valérie Michel-Pellegrino ◽  
David Hewson ◽  
Jean-Yves Hogrel ◽  
Jacques Duchêne

The aim of this study was to analyze differences in biomechanical parameters between elderly and control participants when stepping up, to evaluate control of balance. Eleven control and 14 elderly participants performed a step from an initial static posture onto a 7-cm-high force plate. For the spontaneous-velocity condition, elderly participants performed a slower progression velocity than control participants. Elderly participants spent proportionally more time in stance phase, with a corresponding decrease in swing phase, than the control participants, irrespective of movement velocity. In contrast, at spontaneous velocity the parameters related to ground-reaction force (GRF) showed that anteroposterior and mediolateral forces at toe-off of the support limb and the slope of vertical force during weight transfer were significantly smaller for the elderly than for control participants. These GRF parameters depended on the stepping-up velocity. The elderly develop a spatiotemporal strategy and reduced movement velocity to control support balance.


2020 ◽  
Vol 11 (1) ◽  
pp. 225
Author(s):  
Chang-Gyun Roh

Since the global population is rapidly aging, social interest in the topic is increasing. However, there are not many studies on the elderly who are able to walk on their own, who make up the absolute majority of the total elderly population. Most studies and technological advancements are focused on either the development of assisting devices or on the elderly who use such devices or have a medical history. Therefore, this study analyzed the walks of 31 ordinary individuals of standard physical size and 31 elderly individuals. While there are studies on general gait and walk, there are not many on “maximum walking,” which is associated with a high risk of fall. For this purpose, a motion analysis system and the Ground Reaction Force Plate were used. The results of measuring and analyzing a total of 15 types of kinematic and kinetic variables as targets showed that the elderly experienced a reduced hike in the walking speed by approximately 5% during maximum walking when compared with normal walking. The variables related to balance were measured to be as high as 12%. Considering this, exercise of the elderly should be more focused on reinforcing variables related to balance, and in particular, emphasis should be placed on maintaining balance even when the walking speed increases.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Fatemeh Sharafoddin-Shirazi ◽  
Amir Letafatkar ◽  
Jennifer Hogg ◽  
Vahid Saatchian

Abstract Purpose This study was aimed to examine longitudinal (6, 12, 18, 24 months) asymmetries in double-leg landing kinetics and kinematics of subjects with and without unilateral ACLR. Methods Three-dimensional kinematic and kinetic parameters of 40 participants (n = 20 post-ACLR, n = 20 healthy) were collected with a motion analysis system and force plate during a drop-landing task, and asymmetry indices were compared between groups. Results The asymmetry index (AI) in the ACLR group compared to the healthy group decreased from six to 24 months for vertical ground reaction force (vGRF) from 100% to 6.5% and for anterior posterior ground reaction force (a-pGRF) from 155.5% to 7%. Also, the AI decreased for peak hip flexion moment from 74.5% to 17.1%, peak knee flexion moment from 79.0% to 5.8% and peak ankle dorsiflexion moment from 59.3% to 5.9%. As a further matter, the AI decreased for peak hip abduction moment from 67.8% to 5.1%, peak knee adduction moment from 55.7% to 14.8% and peak knee valgus angle from 48.7% to 23.5%. Conclusions Results obtained from this longitudinal study showed that ACLR patients still suffer from limb asymmetries during landing tasks, which appear to normalize by 24-monthspost-surgery. This finding can help us to better understand biomechanics of the limbs after ACLR, and design more efficient post-surgery rehabilitation programs. Level of evidence Level III.


Author(s):  
F Yazdani ◽  
M Razeghi ◽  
S Ebrahimi

Background: Excessive range of adductory free moment of the ground reaction force may potentially increase the risk of lower extremity injuries by applying a higher torsional load transmitted to the proximal parts.Objective: It was hypothesized that the free moment pattern might be different between hyper-pronated and normal feet subjects. Moreover, a correlation would exist between peak adduction free moment and peak ankle-foot complex abduction at the stance phase of walking.Methods: Thirty female participants were divided into two groups of asymptomatic hyper-pronated and normal feet. Kinetic and kinematic data were collected using a single force plate and a six-camera motion analysis system during three successful free speed walking trials. Ensemble average curves were extracted from the time normalized individual trials of the stance phase for both free moment and peak ankle-foot complex abduction parameters.Results: Significant differences in peak adductory free moment, peak ankle-foot complex eversion and peak ankle-foot complex abduction were found between normal and hyper-pronated groups (4.90±0.97Vs. 5.94±0.88, P < 0.01), (3.30±0.95Vs. 6.28±1.47, P < 0.01) and (4.52±1.16Vs. 8.23±2.52, P < 0.01, respectively).A significant positive correlation was found between the peak adduction free moment and peak ankle-foot complex abduction in both groups, which was more strongly positive in hyper-pronated group (r = 0.745, p < 0.01, normal group, r = 0.900, p < 0.01, hyper-pronated group).Conclusion: As a good measure of torque which is transmitted to the lower extremity, may free moment be a useful biomechanical indicator for both clinical and research purposes.


2015 ◽  
Vol 27 (04) ◽  
pp. 1550036
Author(s):  
Sami Almashaqbeh ◽  
Bahaa Al-Sheikh ◽  
Wan Abu Bakar Wan Abas ◽  
Noor Azuan Abu Osman

The kinematic and kinetic differences between obese and slim people when climbing a staircase at their self-selected speed are compared. A four-step wooden stair instrumented with two force plates were used as the action platform whilst the kinematic and kinetic recordings were collected and analyzed using a six-camera and two-force plate three-dimensional motion analysis system. Ten obese adults, six males and four females, and ten lean adults, six males and four females, volunteered for the study. The results showed that the obese people are able to reduce the knee joint flexion moment when climbing stair compared to the normal slim people. In the frontal plane, no significant differences were found in the knee adduction moment. Moreover, obese individuals have identified some kinematics adaptations including slower velocity and longer stance phase, compared to slim individuals. The obese individuals might adjust their gait characteristics in response to their heavy bodies to reduce or maintain the same load on the knee joint as slim individuals.


2002 ◽  
Vol 14 (01) ◽  
pp. 40-46 ◽  
Author(s):  
PEI-HSI CHOU ◽  
SHEN-KAI CHEN ◽  
YOU-LI CHOU ◽  
FONG-CHIN SU ◽  
YUNG-CHIN SHI ◽  
...  

Elbow joint loading was evaluated during a forward fall at various elbow initial flexion angles, in order to determine which is the best elbow initial flexion angles to prevent the elbow injury during a fall. Subjects were asked to perform a forward fall and followed by a push-up motion in different elbow initial flexion angles: 0°, 20°, 40° and unrestricted group. Fall on the outstretched hand is the leading cause of upper extremity injury. There are far more extension type of supra-condylar fracture of the elbow than flexion type. Flexion of the elbow may represent the effects of damper and spring. Using the motion analysis system, the kinematics and kinetics of the elbow joint were investigated under various elbow initial flexion angles. The loading biomechanics of the elbow joint differed with various elbow initial flexion angles. The ground reaction forces decrease with increase of elbow flexion upon impact. Different initial elbow flexion angles would affect the biomechanics of upper extremities during falls. Forward fall with elbow in extension is more dangerous. Knowledge of elbow kinematics and kinetics may be helpful in preventing injuries by reducing the ground reaction force with changes of the elbow initial flexion angles during a fall.


Sign in / Sign up

Export Citation Format

Share Document