Auditory Augmentation

Author(s):  
Till Bovermann ◽  
René Tünnermann ◽  
Thomas Hermann

With auditory augmentation, the authors describe building blocks supporting the design of data representation tools, which unobtrusively alter the auditory characteristics of structure-borne sounds. The system enriches the structure-borne sound of objects with a sonification of (near) real time data streams. The object’s auditory gestalt is shaped by data-driven parameters, creating a subtle display for ambient data streams. Auditory augmentation can be easily overlaid to existing sounds, and does not change prominent auditory features of the augmented objects like the sound’s timing or its level. In a peripheral monitoring situation, the data stay out of the users’ attention, which thereby remains free to focus on a primary task. However, any characteristic sound change will catch the users’ attention. This article describes the principles of auditory augmentation, gives an introduction to the Reim Software Toolbox, and presents the first observations made in a preliminary long-term user study.

2010 ◽  
Vol 2 (2) ◽  
pp. 27-41 ◽  
Author(s):  
Till Bovermann ◽  
René Tünnermann ◽  
Thomas Hermann

With auditory augmentation, the authors describe building blocks supporting the design of data representation tools, which unobtrusively alter the auditory characteristics of structure-borne sounds. The system enriches the structure-borne sound of objects with a sonification of (near) real time data streams. The object’s auditory gestalt is shaped by data-driven parameters, creating a subtle display for ambient data streams. Auditory augmentation can be easily overlaid to existing sounds, and does not change prominent auditory features of the augmented objects like the sound’s timing or its level. In a peripheral monitoring situation, the data stay out of the users’ attention, which thereby remains free to focus on a primary task. However, any characteristic sound change will catch the users’ attention. This article describes the principles of auditory augmentation, gives an introduction to the Reim Software Toolbox, and presents the first observations made in a preliminary long-term user study.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 141-141
Author(s):  
Brett Ramirez

Abstract Internet enabled swine facilities with smart controllers are forging the future directions of swine management, data analytics, and research. Today’s smart controllers have capabilities far beyond just ventilation operation, they are sophisticated data acquisition and control systems with cloud-based platforms for data aggregation and visualization. This technology has promoted the concept of a connected barn – a facility with autonomous, real-time data capture, analysis, and decision making. Connected barns can monitor indoor environmental conditions, personnel traffic, ventilation function, power consumption, bin weights, weather, refrigerators, etc. This new abundance of customizable measurement options sampled at a high-resolution will fundamentally change swine production. There is often a general lack of information related to conditions/events the pigs experience inside a barn that impact short-/long-term productivity and provide context for interpreting conventional data. Information is now superimposable with other data streams and new relationships between, for example, pig activity, environment, feed intake, daily gain, water consumption, etc. can be discovered. This will enable new avenues in nutrition, health, genetics, technology, husbandry, and engineering because a unified data stream, across numerous spaces is possible. Connected barns provide the link between pigs, data, and their environment. While opportunities are limitless, several key challenges need addressing: representativeness and accuracy of data; diligent management of advanced technology; and cultivation of transdisciplinary knowledge to understand limitations and make thoughtful inquiries. A connected barn is no longer a future concept, but a tangible production system ripe with a myriad of opportunities that will shape the course of animal production.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Eugenio Redolfi Riva ◽  
Silvestro Micera

AbstractNeural interfaces are bioelectronic devices capable of stimulating a population of neurons or nerve fascicles and recording electrical signals in a specific area. Despite their success in restoring sensory-motor functions in people with disabilities, their long-term exploitation is still limited by poor biocompatibility, mechanical mismatch between the device and neural tissue and the risk of a chronic inflammatory response upon implantation.In this context, the use of nature-derived materials can help address these issues. Examples of these materials, such as extracellular matrix proteins, peptides, lipids and polysaccharides, have been employed for decades in biomedical science. Their excellent biocompatibility, biodegradability in the absence of toxic compound release, physiochemical properties that are similar to those of human tissues and reduced immunogenicity make them outstanding candidates to improve neural interface biocompatibility and long-term implantation safety. The objective of this review is to highlight progress and challenges concerning the impact of nature-derived materials on neural interface design. The use of these materials as biocompatible coatings and as building blocks of insulation materials for use in implantable neural interfaces is discussed. Moreover, future perspectives are presented to show the increasingly important uses of these materials for neural interface fabrication and their possible use for other applications in the framework of neural engineering.


2010 ◽  
Vol 31 (3) ◽  
pp. 252-287 ◽  
Author(s):  
Katie Barnfield ◽  
Isabelle Buchstaller

We report on longitudinal changes in the system of intensification in an innovative corpus that spans five decades of dialectal speech. Our analyses allow us — for the first time in a British context — to trace the quantitative development in the variable across four generations. Longitudinal analysis across real and apparent time determines the effect of extralinguistic and intralinguistic variables on intensification in Tyneside and tests to what extent real time data corroborates trends reported from previous apparent time analyses. Long-term competition within the variable manifests itself in distinctive developmental trajectories: expansion — both proportionally within the variable as well as across adjectival categories — tends to follow one of three types of patterns, exemplified, respectively, by really, so and dead. Variant retraction, however, follows only one schema. Importantly, numerical decline in the system does not necessarily go hand in hand with a reduction in breadth of application.


2021 ◽  
Vol 13 (11) ◽  
pp. 6347
Author(s):  
Marco Nunes ◽  
António Abreu ◽  
Célia Saraiva

Projects are considered crucial building blocks whereby organizations execute and implement their short-, mid-, and long-term strategic visions. Projects are thought, developed, and implemented to solve problems, drive change, satisfy unique needs, add value, and exploit opportunities, just to name a few objectives. Although existing project management tools and techniques aim to deliver projects with success, according to the latest reviewed literature, projects still keep failing at an impressive pace. Among the extensive list of factors that may threaten project success, several articles from the research literature place particular importance on a still underexplored factor that may strongly lead to unsuccessful project delivery. This factor—usually known as corporate behavioral risks—usually emerges and evolves as organizations work together to deliver projects across a bounded period of time, and is characterized by the mix of formal and informal dynamic interactions between the different stakeholders that constitute the different organizations. Furthermore, several articles from the research literature also point out the lack of proper models to efficiently manage corporate behavioral risks as one of the major factors that may lead to projects failing. To efficiently identify and measure how such corporate behaviors may contribute to a project’s outcomes (success or failure), a heuristic model is proposed in this work, developed based on four fundamental fields ((1) project management, (2) risk management, (3) corporate behavior, and (4) social network analysis), to quantitatively analyze four critical project social networks ((1) communication, (2) problem-solving, (3) advice, and (4) trust), by applying the theory of social network analysis (SNA). The proposed model in this work is supported with a case study to illustrate its implementation and application across a project lifecycle, and how organizations can benefit from its application.


2021 ◽  
Author(s):  
He Zhang ◽  
Jianxun Zhang ◽  
Rui Wang ◽  
Yazhe Huang ◽  
Mengxiao Zhang ◽  
...  

AbstractWith the rapid development of the Internet of Things (IoT) in the 5G age, the construction of smart cities around the world consequents on the exploration of carbon reduction path based on IoT technology is an important direction for global low carbon city research. Carbon dioxide emissions in small cities are usually higher than that in large and medium cities. However, due to the huge difference in data environment between small cities and Medium-large sized cities, the weak hardware foundation of the IoT, and the high input cost, the construction of a small city smart carbon monitoring platform has not yet been carried out. This paper proposes a real-time estimate model of carbon emissions at the block and street scale and designs a smart carbon monitoring platform that combines traditional carbon control methods with IoT technology. It can exist long-term data by using real-time data acquired with the sensing device. Therefore, the dynamic monitoring and management of low-carbon development in small cities can be achieved. The contributions are summarized as follows: (1) Intelligent thermoelectric systems, industrial energy monitoring systems, and intelligent transportation systems are three core systems of the monitoring platform. Carbon emission measurement methods based on sample monitoring, long-term data, and real-time data have been established, they can solve the problem of the high cost of IoT equipment in small cities. (2) Combined with long-term data, the real-time correction technology, they can dispose of the matter of differences in carbon emission measurement under diverse scales.


Author(s):  
Solmaz Zakhireh ◽  
Yadollah Omidi ◽  
Younes Beygi-Khosrowshahi ◽  
Ayoub Aghanejad ◽  
Jaleh Barar ◽  
...  

Recently, pollen grains (PGs) have been introduced as drug carriers and scaffolding building blocks. This study aimed to assess the in-vitro biocompatibility of Pistacia vera L. hollow PGs/Fe3O4 nanoparticles (HPGs/Fe3O4NPs) composites using human adipose-derived mesenchymal stem cells (hAD-MSCs). In this regard, iron oxide nanoparticles (Fe3O4NPs) were assembled on the surface of HPGs at different concentrations. The biocompatibility of the prepared composites was assessed through MTT assay, apoptosis-related gene expression and field emission scanning electron microscopy (FE-SEM) analysis. Compared to the bare HPGs, the HPGs/Fe3O4NPs exhibited a biphasic impact on hAD-MSCs. The composite containing 1% Fe3O4NPs demonstrated no cytotoxicity up to 21 days while higher Fe3O4NPs contents and long-term exposure revealed adverse effects on the hAD-MSCs’ growth. The obtained result was verified by the qRT-PCR and morphological analysis carried out through FE-SEM which suggests that a narrow region below 1% Fe3O4NPs may be the optimum choice for medicinal applications of HPGs/Fe3O4NPs microdevices.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Yuan Ding ◽  
Yunhua Zhang ◽  
Vincent Fusco

A 10 GHz Fourier Rotman lens enabled dynamic directional modulation (DM) transmitter is experimentally evaluated. Bit error rate (BER) performance is obtained via real-time data transmission. It is shown that Fourier Rotman DM functionality enhances system security performance in terms of narrower decodable low BER region and higher BER values associated with BER sidelobes especially under high signal to noise ratio (SNR) scenarios. This enhancement is achieved by controlled corruption of constellation diagrams in IQ space by orthogonal injection of interference. Furthermore, the paper gives the first report of a functional dual-beam DM transmitter, which has the capability of simultaneously projecting two independent data streams into two different spatial directions while simultaneously scrambling the information signals along all other directions.


Sign in / Sign up

Export Citation Format

Share Document