scholarly journals Fourier Rotman Lens Enabled Directional Modulation Transmitter

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Yuan Ding ◽  
Yunhua Zhang ◽  
Vincent Fusco

A 10 GHz Fourier Rotman lens enabled dynamic directional modulation (DM) transmitter is experimentally evaluated. Bit error rate (BER) performance is obtained via real-time data transmission. It is shown that Fourier Rotman DM functionality enhances system security performance in terms of narrower decodable low BER region and higher BER values associated with BER sidelobes especially under high signal to noise ratio (SNR) scenarios. This enhancement is achieved by controlled corruption of constellation diagrams in IQ space by orthogonal injection of interference. Furthermore, the paper gives the first report of a functional dual-beam DM transmitter, which has the capability of simultaneously projecting two independent data streams into two different spatial directions while simultaneously scrambling the information signals along all other directions.

2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Ankita RayChowdhury ◽  
Ankita Pramanik ◽  
Gopal Chandra Roy

AbstractThis paper presents an approach to access real time data from underground mine. Two advance technologies are presented that can improve the adverse environmental effect of underground mine. Visible light communication (VLC) technology is incorporated to estimate the location of miners inside the mine. The distribution of signal to noise ratio (SNR) for VLC system is also studied. In the second part of the paper, long range (LoRa) technology is introduced for transmitting underground information to above the surface control room. This paper also includes details of the LoRa technology, and presents comparison of ranges with existing above the surface technologies.


2004 ◽  
Vol 4 (3) ◽  
pp. 621-626 ◽  
Author(s):  
D. Janches ◽  
M. C. Nolan ◽  
M. Sulzer

Abstract. Precise knowledge of the angle between the meteor vector velocity and the radar beam axis is one of the largest source of errors in the Arecibo Observatory (AO) micrometeor observations. In this paper we study ~250 high signal-to-noise ratio (SNR) meteor head-echoes obtained using the dual-beam 430 MHz AO Radar in Puerto Rico, in order to reveal the distribution of this angle. All of these meteors have been detected first by the radar first side lobe, then by the main beam and finally seen in the side lobe again. Using geometrical arguments to calculate the meteor velocity in the plane perpendicular to the beam axis, we find that most of the meteors are travelling within ~15° with respect to the beam axis, in excellent agreement with previous estimates. These results suggest that meteoroids entering the atmosphere at greater angles may deposit their meteoric material at higher altitudes explaining at some level the missing mass inconsistency raised by the comparisson of meteor fluxes derived from satellite and traditional meteor radar observations. They also may be the source of the observed high altitude ions and metalic layers observed by radars and lidars respectively.


2021 ◽  
Author(s):  
Janis Heuel ◽  
Wolfgang Friederich

<p>Over the last years, installations of wind turbines (WTs) increased worldwide. Owing to<br>negative effects on humans, WTs are often installed in areas with low population density.<br>Because of low anthropogenic noise, these areas are also well suited for sites of<br>seismological stations. As a consequence, WTs are often installed in the same areas as<br>seismological stations. By comparing the noise in recorded data before and after<br>installation of WTs, seismologists noticed a substantial worsening of station quality leading<br>to conflicts between the operators of WTs and earthquake services.</p><p>In this study, we compare different techniques to reduce or eliminate the disturbing signal<br>from WTs at seismological stations. For this purpose, we selected a seismological station<br>that shows a significant correlation between the power spectral density and the hourly<br>windspeed measurements. Usually, spectral filtering is used to suppress noise in seismic<br>data processing. However, this approach is not effective when noise and signal have<br>overlapping frequency bands which is the case for WT noise. As a first method, we applied<br>the continuous wavelet transform (CWT) on our data to obtain a time-scale representation.<br>From this representation, we estimated a noise threshold function (Langston & Mousavi,<br>2019) either from noise before the theoretical P-arrival (pre-noise) or using a noise signal<br>from the past with similar ground velocity conditions at the surrounding WTs. Therefore, we<br>installed low cost seismometers at the surrounding WTs to find similar signals at each WT.<br>From these similar signals, we obtain a noise model at the seismological station, which is<br>used to estimate the threshold function. As a second method, we used a denoising<br>autoencoder (DAE) that learns mapping functions to distinguish between noise and signal<br>(Zhu et al., 2019).</p><p>In our tests, the threshold function performs well when the event is visible in the raw or<br>spectral filtered data, but it fails when WT noise dominates and the event is hidden. In<br>these cases, the DAE removes the WT noise from the data. However, the DAE must be<br>trained with typical noise samples and high signal-to-noise ratio events to distinguish<br>between signal and interfering noise. Using the threshold function and pre-noise can be<br>applied immediately on real-time data and has a low computational cost. Using a noise<br>model from our prerecorded database at the seismological station does not improve the<br>result and it is more time consuming to find similar ground velocity conditions at the<br>surrounding WTs.</p>


2020 ◽  
Vol 634 ◽  
pp. A70
Author(s):  
S. González-Gaitán ◽  
A. M. Mourão ◽  
F. Patat ◽  
J. P. Anderson ◽  
A. Cikota ◽  
...  

Context. Polarimetry is a very powerful tool for uncovering various properties of astronomical objects that otherwise remain hidden in standard imaging or spectroscopic observations. While common observations only measure the intensity of light, polarimetric measurements allow us to distinguish and measure the two perpendicular components of the electric field associated with the incoming light. By using polarimetry it is possible to unveil asymmetries in supernova explosions, properties of intervening dust, characteristics of atmosphere of planets, among others. However, the reliable measurement of the low polarization signal from astronomical sources requires a good control of spurious instrumental polarization induced by the various components of the optical system and the detector. Aims. We perform a detailed multi-wavelength calibration study of the FORS2 instrument at the VLT operating in imaging polarimetric mode to characterize the spatial instrumental polarization that may affect the study of extended sources. Methods. We used imaging polarimetry of high signal-to-noise ratio blank field BVRI observations during the full moon, when the polarization is expected to be constant across the field of view and deviations originate from the instrument, and a crowded star cluster in broad-band RI and narrow-band Hα filters, where the individual polarization values of each star across the field can be measured. Results. We find an instrumental polarization pattern that increases radially outwards from the optical axis of the instrument reaching up to 1.4% at the edges, depending on the filter. Our results are closely approximated by an elliptical paraboloid down to less than ∼0.05% accuracy, and ∼0.02% when using non-analytic fits. We present 2D maps to correct for this spurious instrumental polarization. We also give several tips and tricks for analyzing polarimetric measurements of extended sources. Conclusions. FORS2 is a powerful instrument that allows the linear polarimetry of extended sources to be mapped. We present and discuss a methodology that can be used to measure the polarization of such sources, and to correct for the spatial polarization induced in the optical system. This methodology could be applied to polarimetric measurements using other dual-beam polarimeters.


Author(s):  
Gebremedhn Wubet Wagaye

<p>The noise introduced in the channel obviously affects the bit error rate of the communication system and this has direct impact in the security. Here the main problem is that the receiver terminal decoding techniques can lead to wrong interpretation even if the Bit Error Rate (BER) is acceptable. So the main idea here is to introduce high values of Signal to Noise Ratio (SNR) that can improve the bit error rate which exists due to the noise introduced in the wireless channel.</p>


2004 ◽  
Vol 4 (1) ◽  
pp. 207-225
Author(s):  
D. Janches ◽  
M. C. Nolan ◽  
M. Sulzer

Abstract. Precise knowledge of the angle between the meteor vector velocity and the radar beam axis is one of the largest source of errors in the Arecibo Observatory (AO) micrometeor observations. In this paper we study ~250 high signal-to-noise ratio (SNR) meteor head-echoes obtained using the dual-beam 430 MHz AO Radar in Puerto Rico, in order to reveal the distribution of this angle. All of these meteors have been detected first by the radar first side lobe, then by the main beam and finally seen in the side lobe again. Using geometrical arguments to calculate the meteor velocity in the plane perpendicular to the beam axis, we find that most of the meteors are travelling within ~15° with respect to the beam axis, in excellent agreement with previous estimates. These results suggest that meteoroids entering the atmosphere at greater angles may deposit their meteoric material at higher altitudes explaining at some level the missing mass inconsistency raised by the comparisson of meteor fluxes derived from satellite and radar observations. They also may be the source of the observed high altitude ions and metallic layers observed by radars and lidars respectively.


1989 ◽  
Vol 43 (2) ◽  
pp. 283-288 ◽  
Author(s):  
David A. Glenar ◽  
David K. Lewis

A specially designed tunable diode laser (TDL) absorption spectrometer which operates near 900 and 1300 cm−1 has been constructed in order to identify and measure very low concentrations of product gases extracted from a single-pulse shock-tube experiment. The ultra-high-frequency resolution of the TDL spectrometer (5 to 10 MHz) shows the rotational fine structure in an absorption spectrum, clearly distinguishing between isomers of the same compound. The spectrometer features dual-beam detection in order to simultaneously acquire source and reference gas spectra for unambiguous labeling of the product gases, and rapid sweep averaging, which minimizes the effects of low-frequency mechanical vibrations and achieves very high signal-to-noise ratio. Cis and trans isomers of 1,2-d2-cyclobutane were detected and measured in quantities of shock-tube products as small as 75 cm3-Torr. Several conformations of deuterated ethenes were also detected in samples smaller than 1 cm3-Torr.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 951-958
Author(s):  
Tianhao Liu ◽  
Yu Jin ◽  
Cuixiang Pei ◽  
Jie Han ◽  
Zhenmao Chen

Small-diameter tubes that are widely used in petroleum industries and power plants experience corrosion during long-term services. In this paper, a compact inserted guided-wave EMAT with a pulsed electromagnet is proposed for small-diameter tube inspection. The proposed transducer is noncontact, compact with high signal-to-noise ratio and unattractive to ferromagnetic tubes. The proposed EMAT is designed with coils-only configuration, which consists of a pulsed electromagnet and a meander pulser/receiver coil. Both the numerical simulation and experimental results validate its feasibility on generating and receiving L(0,2) mode guided wave. The parameters for driving the proposed EMAT are optimized by performance testing. Finally, feasibility on quantification evaluation for corrosion defects was verified by experiments.


2018 ◽  
Author(s):  
Satish Kodali ◽  
Liangshan Chen ◽  
Yuting Wei ◽  
Tanya Schaeffer ◽  
Chong Khiam Oh

Abstract Optical beam induced resistance change (OBIRCH) is a very well-adapted technique for static fault isolation in the semiconductor industry. Novel low current OBIRCH amplifier is used to facilitate safe test condition requirements for advanced nodes. This paper shows the differences between the earlier and novel generation OBIRCH amplifiers. Ring oscillator high standby leakage samples are analyzed using the novel generation amplifier. High signal to noise ratio at applied low bias and current levels on device under test are shown on various samples. Further, a metric to demonstrate the SNR to device performance is also discussed. OBIRCH analysis is performed on all the three samples for nanoprobing of, and physical characterization on, the leakage. The resulting spots were calibrated and classified. It is noted that the calibration metric can be successfully used for the first time to estimate the relative threshold voltage of individual transistors in advanced process nodes.


2020 ◽  
Vol 25 (2) ◽  
pp. 86-97
Author(s):  
Sandy Suryo Prayogo ◽  
Tubagus Maulana Kusuma

DVB merupakan standar transmisi televisi digital yang paling banyak digunakan saat ini. Unsur terpenting dari suatu proses transmisi adalah kualitas gambar dari video yang diterima setelah melalui proses transimisi tersebut. Banyak faktor yang dapat mempengaruhi kualitas dari suatu gambar, salah satunya adalah struktur frame dari video. Pada tulisan ini dilakukan pengujian sensitifitas video MPEG-4 berdasarkan struktur frame pada transmisi DVB-T. Pengujian dilakukan menggunakan simulasi matlab dan simulink. Digunakan juga ffmpeg untuk menyediakan format dan pengaturan video akan disimulasikan. Variabel yang diubah dari video adalah bitrate dan juga group-of-pictures (GOP), sedangkan variabel yang diubah dari transmisi DVB-T adalah signal-to-noise-ratio (SNR) pada kanal AWGN di antara pengirim (Tx) dan penerima (Rx). Hasil yang diperoleh dari percobaan berupa kualitas rata-rata gambar pada video yang diukur menggunakan metode pengukuran structural-similarity-index (SSIM). Dilakukan juga pengukuran terhadap jumlah bit-error-rate BER pada bitstream DVB-T. Percobaan yang dilakukan dapat menunjukkan seberapa besar sensitifitas bitrate dan GOP dari video pada transmisi DVB-T dengan kesimpulan semakin besar bitrate maka akan semakin buruk nilai kualitas gambarnya, dan semakin kecil nilai GOP maka akan semakin baik nilai kualitasnya. Penilitian diharapkan dapat dikembangkan menggunakan deep learning untuk memperoleh frame struktur yang tepat di kondisi-kondisi tertentu dalam proses transmisi televisi digital.


Sign in / Sign up

Export Citation Format

Share Document