Proliferation and Nonlinear Dynamics of Childhood Acute Lymphoblastic Leukemia Revisited

Author(s):  
George I. Lambrou

Acute Lymphoblastic Leukaemia (ALL) is the most common neoplasm in children but the mechanisms underlying leukemogenesis along with the dynamics of leukemic cell proliferation are poorly understood. The importance in understanding the proliferation dynamics of leukaemia lies in the fact that our knowledge from the point of first appearance to the moment of clinical presentation, we know almost nothing. Further on, describing cell proliferation dynamics in a more mature, probably mathematical, way it could lead us to the understanding of disease ontogenesis and thus its aetion. This chapter reviews the current knowledge on proliferation dynamics and proliferation non-linear dynamics of the leukemic cell. Furthermore, we present some “in-house” experimental data that support the view that it is possible to model leukemic cell proliferation and explain how this has been performed in in vitro experiments.

Author(s):  
George I. Lambrou ◽  
Apostolos Zaravinos ◽  
Maria Adamaki ◽  
Spiros Vlahopoulos

Acute Lymphoblastic Leukemia (ALL) is the most common neoplasm in children, but the mechanisms underlying leukemogenesis are poorly understood, despite the existence of several theories regarding the mechanics of leukemic cell proliferation. However, with the advent of new biological principles, it appears that a systems approach could be used in an effective search of global patterns in biological systems, so as to be able to model the phenomenon of proliferation and gain a better understanding of how cells may progress from a healthy to a diseased state. This chapter reviews the current knowledge on proliferation dynamics, along with a discussion of the several existing theories on leukemogenesis and their comparison with the theories governing general oncogenesis. Furthermore, the authors present some “in-house” experimental data that support the view that it is possible to model leukemic cell proliferation and explain how this has been performed in in vitro experiments.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shuiyan Wu ◽  
You Jiang ◽  
Yi Hong ◽  
Xinran Chu ◽  
Zimu Zhang ◽  
...  

Abstract Background T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease with a high risk of induction failure and poor outcomes, with relapse due to drug resistance. Recent studies show that bromodomains and extra-terminal (BET) protein inhibitors are promising anti-cancer agents. ARV-825, comprising a BET inhibitor conjugated with cereblon ligand, was recently developed to attenuate the growth of multiple tumors in vitro and in vivo. However, the functional and molecular mechanisms of ARV-825 in T-ALL remain unclear. This study aimed to investigate the therapeutic efficacy and potential mechanism of ARV-825 in T-ALL. Methods Expression of the BRD4 were determined in pediatric T-ALL samples and differential gene expression after ARV-825 treatment was explored by RNA-seq and quantitative reverse transcription-polymerase chain reaction. T-ALL cell viability was measured by CCK8 assay after ARV-825 administration. Cell cycle was analyzed by propidium iodide (PI) staining and apoptosis was assessed by Annexin V/PI staining. BRD4, BRD3 and BRD2 proteins were detected by western blot in cells treated with ARV-825. The effect of ARV-825 on T-ALL cells was analyzed in vivo. The functional and molecular pathways involved in ARV-825 treatment of T-ALL were verified by western blot and chromatin immunoprecipitation (ChIP). Results BRD4 expression was higher in pediatric T-ALL samples compared with T-cells from healthy donors. High BRD4 expression indicated a poor outcome. ARV-825 suppressed cell proliferation in vitro by arresting the cell cycle and inducing apoptosis, with elevated poly-ADP ribose polymerase and cleaved caspase 3. BRD4, BRD3, and BRD2 were degraded in line with reduced cereblon expression in T-ALL cells. ARV-825 had a lower IC50 in T-ALL cells compared with JQ1, dBET1 and OTX015. ARV-825 perturbed the H3K27Ac-Myc pathway and reduced c-Myc protein levels in T-ALL cells according to RNA-seq and ChIP. In the T-ALL xenograft model, ARV-825 significantly reduced tumor growth and led to the dysregulation of Ki67 and cleaved caspase 3. Moreover, ARV-825 inhibited cell proliferation by depleting BET and c-Myc proteins in vitro and in vivo. Conclusions BRD4 indicates a poor prognosis in T-ALL. The BRD4 degrader ARV-825 can effectively suppress the proliferation and promote apoptosis of T-ALL cells via BET protein depletion and c-Myc inhibition, thus providing a new strategy for the treatment of T-ALL.


2019 ◽  
Vol 39 (6) ◽  
Author(s):  
Hongying Zhao ◽  
Yu Wang ◽  
Xiubao Ren

Abstract Objective: Nicotine, the main ingredient in tobacco, is identified to facilitate tumorigenesis and accelerate metastasis in tumor. Studies in recent years have reported that long intergenic non-protein coding RNA 460 (LINC00460) is strongly associated with lung cancer poor prognosis and nicotine dependence. Nonetheless, it is unclear whether nicotine promotes the development of lung cancer through activation of LINC00460. Methods: We determined that LINC00460 expression in lung cancer tissues and the prognosis in patients with non-small cell lung carcinoma (NSCLC) using Gene Expression Profiling Interactive Analysis (GEPIA) website and The Cancer Genome Atlas (TCGA) database. Through in vitro experiments, we studied the effects of nicotine on LINC00460 in NSCLC cells lines using Cell Counting Kit-8 (CCK-8), transwell test, flow cytometry, quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and Western blot assays. Results: We identified the significant up-regulated expression level of LINC00460 in NSCLC tissues and cell lines, especially, the negative correlation of LINC00460 expression level with overall survival (OS). In in vitro experiments, LINC00460 was overexpressed in NSCLC cell lines under nicotine stimulation. Nicotine could relieve the effect of LINC00460 knockdown on NSCLC cell proliferation, migration and apoptosis. The same influence was observed on PI3K/Akt signaling pathway. Conclusions: In summary, this is the first time to examine the potential roles of LINC00460 in lung cancer cell proliferation, migration and apoptosis induced by nicotine. This may help to develop novel therapeutic strategies for the prevention and treatment of metastatic tumors from cigarette smoke-caused lung cancer by blocking the nicotine-activated LINC00460 pathway.


2020 ◽  
Vol 21 (7) ◽  
pp. 2549 ◽  
Author(s):  
Asghar Ali ◽  
Mark Stenglein ◽  
Thomas Spencer ◽  
Gerrit Bouma ◽  
Russell Anthony ◽  
...  

LIN28 inhibits let-7 miRNA maturation which prevents cell differentiation and promotes proliferation. We hypothesized that the LIN28-let-7 axis regulates proliferation-associated genes in sheep trophectoderm in vivo. Day 9-hatched sheep blastocysts were incubated with lentiviral particles to deliver shRNA targeting LIN28 specifically to trophectoderm cells. At day 16, conceptus elongation was significantly reduced in LIN28A and LIN28B knockdowns. Let-7 miRNAs were significantly increased and IGF2BP1-3, HMGA1, ARID3B, and c-MYC were decreased in trophectoderm from knockdown conceptuses. Ovine trophoblast (OTR) cells derived from day 16 trophectoderm are a useful tool for in vitro experiments. Surprisingly, LIN28 was significantly reduced and let-7 miRNAs increased after only a few passages of OTR cells, suggesting these passaged cells represent a more differentiated phenotype. To create an OTR cell line more similar to day 16 trophectoderm we overexpressed LIN28A and LIN28B, which significantly decreased let-7 miRNAs and increased IGF2BP1-3, HMGA1, ARID3B, and c-MYC compared to control. This is the first study showing the role of the LIN28-let-7 axis in trophoblast proliferation and conceptus elongation in vivo. These results suggest that reduced LIN28 during early placental development can lead to reduced trophoblast proliferation and sheep conceptus elongation at a critical period for successful establishment of pregnancy.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2792-2792
Author(s):  
Renate Panzer-Gruemayer ◽  
Gerd Krapf ◽  
Dominik Beck ◽  
Gerhard Fuka ◽  
Christian Bieglmayer ◽  
...  

Abstract The chromosomal translocation t(12;21)(p13;q22) resulting in the TEL/AML1 (also known as ETV6/ RUNX1) fusion gene is the most frequent translocation in childhood B cell precursor (BCP) ALL. This type of ALL is characterized by a unique molecular signature, which includes the overexpression of the gene for the erythropoietin receptor (EpoR). So far, it is not known what causes the overexpression of the EpoR gene or whether it has any effect on the t(12;21) positive leukemia. We therefore aimed to evaluate potential mechanisms responsible for the upregulation of the EpoR in t(12;21) leukemias and to find out whether signalling via this receptor affects survival or proliferation of leukemic cells. In addition, we planned to explore signalling pathways linked to the respective effects and to elucidate relevant mechanisms that might be essential for cell survival. We first excluded the possibility that the EpoR expression is upregulated as a consequence of high Epo levels in the plasma that are induced by the patients’ low hemoglobin (Hb) levels. While Hb levels from patients with t(12;21)+ ALL were significantly lower compared to those with other subtypes of BCP ALL (median, 6,15g/dL and 7,9g/dL, respectively; p<0.001 Wilcoxon 2- sample test), which correlated with high Epo levels in the plasma, the extent of EpoR mRNA expression of leukemic cells was independent of the respective amount of Epo in the individual patient’s plasma. Next, the influence of Epo on t(12;21) + leukemic cell lines was evaluated and revealed a consistent time and dose dependent increase in proliferation (Epo concentrations 10, 50, 100U/ml for 72 hours) determined by 3H-Thymidine incorporation. This effect was abrogated upon addition of a blocking anti-EpoR antibody thereby confirming the specificity of EpoR signalling. Since Epo may have apoptosis-modulating potential in EpoR expressing malignant cells, we tested its influence on drug-induced apoptosis. For this purpose IC50 concentrations of drugs that are commonly used for the treatment of children with BCP ALL were used. A reduction of glucocorticoid (GC)-induced apoptosis by Epo was demonstrated in t(12;21)+ cell lines while no effect was seen in combination with other drugs or in t(12;21) negative cell lines. Preliminary data indicate that NF-kappa B as well as PI3K/Akt pathways are triggered by Epo, implying that they play a role in this rescue mechanism. Given that cell lines may have intrinsic changes, we are presently evaluating whether the observed results can also be reproduced in primary leukemic cells. In support of this assumption are results in a limited number of primary t(12;21)+ leukemias showing a superior survival (MTT assay) and reduced apoptosis rate to GC when cultured in the presence of Epo. These findings are in contrast to those in t(12;21) negative BCP ALLs. In conclusion, our data indicate that overexpression of EpoR in t(12;21) positive leukemias is not induced by low Hb, a feature that is generally observed in patients with this type of leukemia. Binding of Epo to its receptor in vitro leads to enhanced survival and negatively affects the sensitivity to GCs. Whether these findings have any implications on the treatment and care of patients with t(12;21)+ leukemia needs to be addressed in further studies. Financial support: OENB10720, FWF P17551-B14 and GENAU-CHILD Projekt GZ200.136/1 - VI/1/2005 to RPG.


2014 ◽  
Vol 104 (1) ◽  
pp. 365-377 ◽  
Author(s):  
Swantje Hauschild ◽  
Svantje Tauber ◽  
Beatrice Lauber ◽  
Cora S. Thiel ◽  
Liliana E. Layer ◽  
...  

Blood ◽  
1989 ◽  
Vol 73 (2) ◽  
pp. 381-390
Author(s):  
J Kurtzberg ◽  
TA Waldmann ◽  
MP Davey ◽  
SH Bigner ◽  
JO Moore ◽  
...  

Following our initial observation of in vivo conversion of CD7+, CD4-, CD8- acute lymphoblastic leukemia (ALL) cells from lymphoid to myeloid lineages (Proc Natl Acad Sci (USA) 81:253, 1984) we have studied eight additional cases of ALL with this leukemic cell phenotype. The CD7+, CD4-, CD8- phenotype was associated with a distinct clinical entity with those affected predominantly male (either less than 35 years or greater than 65 years of age), with frequent mediastinal and/or thymic masses, skin and CNS disease, high peripheral WBC counts, and bone marrow blasts that were morphologically L1 or not ascribable to a specific lineage. These patients did not respond to conventional chemotherapeutic regimens for either acute lymphoid or myeloid leukemias. No common karyotype or T-cell gene rearrangement pattern could be defined. Importantly, seven of eight patient's leukemic cells studied were capable of multilineage (myeloid, erythroid, monocytoid, megakaryocytoid, and lymphoid) differentiation in vitro. Data is presented suggesting that CD7+, CD4-, CD8- leukemias, in many instances, are leukemias of immature hematopoietic cells. The development of novel therapeutic approaches to this form of leukemia will be necessary to alter its poor prognosis.


Sign in / Sign up

Export Citation Format

Share Document