Novel Bioremediation Methods in Waste Management

Author(s):  
Charu Gupta ◽  
Dhan Prakash

Bioremediation technologies are one of the novel methods in the field of waste and environment management and are presently gaining immense credibility for being eco-compatible. Bioremediation using microbes has been well accepted as an environment friendly and economical treatment method for disposal of hazardous petroleum hydrocarbon contaminated waste (oily waste). Besides this, earthworms can be used to extract toxic heavy metals, including cadmium and lead, from solid waste from domestic refuse collection and waste from vegetable and flower markets. Other novel methods used recently for treatment of wastes are plasma incineration or plasma assisted gasification and pyrolysis technology. The technologies applied for conditioning include ultrasonic degradation, chemical degradation, enzyme addition, electro-coagulation and biological cell destruction. Genetic engineering is another method for improving bioremediation of heavy metals and organic pollutants. Transgenic plants and associated bacteria constitute a new generation of genetically modified organisms for bioremediation.

2020 ◽  
pp. 1627-1643 ◽  
Author(s):  
Charu Gupta ◽  
Dhan Prakash

Bioremediation technologies are one of the novel methods in the field of waste and environment management and are presently gaining immense credibility for being eco-compatible. Bioremediation using microbes has been well accepted as an environment friendly and economical treatment method for disposal of hazardous petroleum hydrocarbon contaminated waste (oily waste). Besides this, earthworms can be used to extract toxic heavy metals, including cadmium and lead, from solid waste from domestic refuse collection and waste from vegetable and flower markets. Other novel methods used recently for treatment of wastes are plasma incineration or plasma assisted gasification and pyrolysis technology. The technologies applied for conditioning include ultrasonic degradation, chemical degradation, enzyme addition, electro-coagulation and biological cell destruction. Genetic engineering is another method for improving bioremediation of heavy metals and organic pollutants. Transgenic plants and associated bacteria constitute a new generation of genetically modified organisms for bioremediation.


2019 ◽  
Vol 81 (5) ◽  
Author(s):  
Najaa Syuhada Mohamad Thani ◽  
Rozidaini Mohd Ghazi ◽  
Mohd Faiz Mohd Amin ◽  
Zulhazman Hamzah

Water pollution by toxic heavy metals is a global environmental problem. It has led to the development of alternative technologies for heavy metals removal from contaminated sites. Constructed wetland microcosm by using Alocasia puber is a possible treatment method for wastewater containing heavy metals. Synthetic wastewater with heavy metals Cd, Cr, Cu, Ni, and Zn were used in this study. Several heavy metals concentrations (5 mg/L, 10 mg/L and 100 mg/L) were used in the systems. Six different hydraulic retention times (HRTs) (2, 4, 6, 8, 10 and 12 days) were tested in the present study. The results obtained showed removal efficiencies of heavy metals of >99% after day 12. The removal of Ni from 10 mg/L solutions (initial concentrations) recorded the best removal efficiency. Heavy metal translocation factor (TF) was found to be less than 1 for all metals tested, which confirmed the significance of roots as heavy metals accumulator compared to stems or leaves of A, puber. Therefore, this study concluded that A, puber has a great potential as an important component in constructed wetlands for water contaminated with heavy metals.


Author(s):  
Gulnar Aidarkhanova ◽  
◽  
Bardat Imasheva ◽  

The article discusses the issues of monitoring of the lilacs species (Syringa) that could be introduced in the green spaces of the Akmola region and the cities of Central Kazakhstan. This study presents the data on the biodiversity of perspective tree species and shrubs that could be used for landscaping of urban areas; a brief history of their introduction is published. In the course of the study, the authors proposed a methodology for monitoring lilac species selected for introduction from the Republic of China that were planted in 2015 (Amur lilac (Syrínga amurénsis), oblata lilac (S. oblata), fluffy lilac (S. pubescens), Beijing lilac (S. pekinensis)). Their seedling survival were 50.0 %; 86.4 %; 23.3 %; 71.7 %. Among these species, S. oblata (86.4 %) and S. pekinensis (71.7 %) were the most adapted on the territory of the Akmola region by the summer of 2019. The activity of photosynthesis was determined as an assessment for the intensity of physiological and biochemical parameters in introduced plants. Significantly lower photosynthetic activity was detected in S. oblata (0.75 μg / g); however, it was increased in all three species of lilacs (0.78 μg / g). Measuring heavy metal content in studied species, we detected up to 2.5 times higher concentration of cadmium and lead in the leaves of S. amurénsis comparing to others. Amur lilac accumulates a very high level of iron (3833.69 μg / g), which is 13 times higher than the maximum permitted concentration (MPC). The concentration of copper in the leaves of S. oblata is 1.1 times higher than the MPC. The amount of zinc is approximately the same in all studied plant samples and the values do not exceed the MPC. It was observed that Cu and Fe accumulate in lilac leaves more than permitted according to MPC. S. amurénsis has high accumulating properties, as it has been shown that it intensively absorbs the most toxic heavy metals. According to research findings, it has been shown that heavy metals accumulate in different concentrations in each species of lilac. The accumulation of heavy metals in lilac plants occurs selectively, depending on the species.


Author(s):  
MdDidarul Islam, Ashiqur Rahaman, Aboni Afrose

This study was based on determining concentration of essential and toxic heavy metal in coconut water available at a local Hazaribagh area in Dhaka, Bangladesh. All essential minerals, if present in the drinking water at high concentration or very low concentration, it has negative actions. In this study, fifteen samples and eight heavy metals were analyzed by Atomic Absorption Spectroscopy (AAS) method which was followed by wet ashing digestion method. The concentration obtained in mg/l were in the range of 0.3 to 1.5, 7.77 to 21.2, 0 to 0.71, 0 to 0.9, 0 to 0.2, 0.9 to 17.3, 0.1 to 0.9, 0 to 0.9 and 0 to 0.7 for Fe, Ni, Cu, Cd, Cr, Zn, Pb and Se respectively. From this data it was concluded that any toxic heavy metals like Cd, Cr, Pb and Ni exceed their toxicity level and some essential nutrients were in low concentration in those samples. 


2017 ◽  
Vol 1 ◽  
pp. 264
Author(s):  
Md Didarul Islam ◽  
Ashiqur Rahaman ◽  
Fahmida Jannat

This study was based on to determine the concentration of macro and micro nutrients as well as toxic and nontoxic heavy metals present in the chicken feed available in Dhaka city of Bangladesh. All macro nutrients, if present in the feed at high concentration have some adverse effect, at the same time if this nutrient present in the feed at low concentration this have some adverse effect too. So that this nutrient level should be maintained at a marginal level. On the other side toxic heavy metals if present in the feed at very low concentration those can contaminate the total environment of the ecosystem. In this study six brand samples (starter, grower, finisher and layer) which was collected from different renowned chicken feed formulation industry in Bangladesh. Those samples were prepared for analysis by wet ashing and then metals were determined by Atomic Absorption Spectroscopy. It was found that 27.7 to 68.4, 57.3 to 121.9, 0.21 to 4.1, 0.32 to 2.1, 0.11 to 1.58, 0.28 to 2.11 and 0.28 to 1.78 for zinc, iron, copper, mercury, cadmium, nickel and cobalt respectively. It was found that essential macro and micro nutrients were present in the feed in low concentration on the other side mercury was present in high concentration in the feed samples.


2017 ◽  
Vol 68 (10) ◽  
pp. 2363-2366
Author(s):  
Delia Nica Badea

The paper evaluates the presence and content of traces of heavy metals Hg, Pb, Ni, Cd (total forms) from coal and solid combustion products, the degree of transfer and accessibility in the area of influence of a lignite power plant. The content of toxic heavy metals in residues are characterized by RE Meiji [ 1 (Pb and Hg) and REMeij �1 (Ni and Cd) for the filter ash. Pb and Ni content in the soil exceeds normal values, and Pb exceeds and alert value for sensitive soils around the residue deposit (70.20 mg.Kg-1). The degree of accessibility of the metals in plants (TF), reported at the Khan reference value (0.5), indicates a significant bioaccumulation level for the metals: Cd (1.9) and Hg (0.6) inside the deposit; Cd (0.39) at the base of the deposit, Hg (0.8) in the area of the thermal power plant. The trace levels of heavy metals analyzed by GFAAS and CVAAS (Hg), indicates a moderate risk potential for food safety and quality of life in the studied area.


Author(s):  
Varsha Shukla ◽  
Siddharth Kumar Das ◽  
Abbas Ali Mahdi ◽  
Shweta Agarwal ◽  
Ragini Alok ◽  
...  

BACKGROUND: Fibromyalgia syndrome (FMS) is an extra-articular rheumatological disease characterised by widespread chronic musculoskeletal pain. Metal-induced oxidative stress contributes to the severity of FMS. AIMS: First, this study evaluated the association between plasma levels of toxic heavy metals and essential metals with oxidative stress (OS) markers. Second, the OS markers and metal contents were correlated with the disease severity by assessing the Fibromyalgia Impact Questioner Revised (FIQR) and tender points (TP). METHOD: A total of 105 FMS patients and 105 healthy controls of similar age and sex were recruited. OS parameter such as lipid peroxidation (LPO), protein carbonyl group (PCG), nitric oxide (NO) and essential metals such as zinc (Zn), magnesium (Mg), manganese (Mn), copper (Cu) and toxic heavy metals such as aluminium (Al), arsenic (As), lead (Pb) were estimated. RESULTS: Levels of LPO, PCG, NO (p< 0.001) and Cu, Mn, and Al (p< 0.001), were significantly higher, and Mg (p< 0.001) and Zn (p< 0.001) were significantly lower in patients compared to controls. A positive association was observed between OS parameters, FIQR and TP with Cu, Al and Mn. A significant negative association was observed between Zn and Mg with FIQR, TP and OS parameters. CONCLUSION: Heavy metals such as Al induce OS parameters and decrease the levels of essential trace elements such as Mg and Zn, which may be responsible for the severity of FMS.


RSC Advances ◽  
2020 ◽  
Vol 10 (68) ◽  
pp. 41482-41487
Author(s):  
Chen-Chen Zhu ◽  
Ning Bao ◽  
Xiao-Lei Huo

Children's shoes are potential sources of toxic heavy metals, especially for younger children.


Sign in / Sign up

Export Citation Format

Share Document