scholarly journals On the Mechanical Behavior of Masonry

Author(s):  
Vasilis Sarhosis ◽  
D. V. Oliveira ◽  
P. B. Lourenco

In this chapter, a review on the mechanical behaviour of masonry is presented. The aim is to establish a base of knowledge and understanding of masonry that will underpin its mechanical characteristics and will inform the decisions towards the selection of the computational tool used which are going to be described in the following chapters. Initially, a brief description of the factors that influence the mechanical response of masonry and the variation of the material properties are discussed. The review then considers the possible causes of cracking in masonry and the different failure modes that may occur during loading. Principal findings from the review are summarised at the end of the chapter.

2005 ◽  
Vol 127 (7) ◽  
pp. 1158-1167 ◽  
Author(s):  
Adam H. Hsieh ◽  
Diane R. Wagner ◽  
Louis Y. Cheng ◽  
Jeffrey C. Lotz

In vivo rodent tail models are becoming more widely used for exploring the role of mechanical loading on the initiation and progression of intervertebral disc degeneration. Historically, finite element models (FEMs) have been useful for predicting disc mechanics in humans. However, differences in geometry and tissue properties may limit the predictive utility of these models for rodent discs. Clearly, models that are specific for rodent tail discs and accurately simulate the disc’s transient mechanical behavior would serve as important tools for clarifying disc mechanics in these animal models. An FEM was developed based on the structure, geometry, and scale of the mouse tail disc. Importantly, two sources of time-dependent mechanical behavior were incorporated: viscoelasticity of the matrix, and fluid permeation. In addition, a novel strain-dependent swelling pressure was implemented through the introduction of a dilatational stress in nuclear elements. The model was then validated against data from quasi-static tension-compression and compressive creep experiments performed previously using mouse tail discs. Finally, sensitivity analyses were performed in which material parameters of each disc subregion were individually varied. During disc compression, matrix consolidation was observed to occur preferentially at the periphery of the nucleus pulposus. Sensitivity analyses revealed that disc mechanics was greatly influenced by changes in nucleus pulposus material properties, but rather insensitive to variations in any of the endplate properties. Moreover, three key features of the model—nuclear swelling pressure, lamellar collagen viscoelasticity, and interstitial fluid permeation—were found to be critical for accurate simulation of disc mechanics. In particular, collagen viscoelasticity dominated the transient behavior of the disc during the initial 2200s of creep loading, while fluid permeation governed disc deformation thereafter. The FEM developed in this study exhibited excellent agreement with transient creep behavior of intact mouse tail motion segments. Notably, the model was able to produce spatial variations in nucleus pulposus matrix consolidation that are consistent with previous observations in nuclear cell morphology made in mouse discs using confocal microscopy. Results of this study emphasize the need for including nucleus swelling pressure, collagen viscoelasticity, and fluid permeation when simulating transient changes in matrix and fluid stress/strain. Sensitivity analyses suggest that further characterization of nucleus pulposus material properties should be pursued, due to its significance in steady-state and transient disc mechanical response.


2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Yafeng Han ◽  
Xinrong Liu ◽  
Ning Wei ◽  
Dongliang Li ◽  
Zhiyun Deng ◽  
...  

The recent surge of interest towards the mechanical response of rock mass produced by tunnel-type anchorage (TTA) has generated a handful of theories and an array of empirical explorations on the topic. However, none of these have attempted to arrange the existing achievements in a systematic way. The present work puts forward an integrative framework laid out over three levels of explanation and practical approach, mechanical behavior, and calculation method of the ultimate pullout force to compare and integrate the existing findings in a meaningful way. First, it reviews the application of TTA in China and analyzes its future development trend. Then, it summarizes the research results of TTA in terms of load transfer characteristics, deformation characteristics, failure modes, and calculation of ultimate uplift resistance. Finally, it introduces four field model tests in soft rock (mainly mudstone formations), and some research results are obtained. Furthermore, it compares the mechanical behavior of TTA in hard rock strata and soft rock strata, highlighting the main factors affecting the stability of TTA in soft rock formation. This paper proposes a series of focused topics for future investigation that would allow deconstruction of the drivers and constraints of the development of TTA.


2011 ◽  
Vol 675-677 ◽  
pp. 435-438
Author(s):  
Wei Xiang Zhang ◽  
Xing Shao ◽  
Zhao Ran Xiao

Polymers have been proved to have attractive mechanical characteristics, which made it desirable to choose these materials over traditional materials for numerous types of applications. As the uses of polymers increase, a thorough understanding of the mechanical behavior of these materials becomes vital in order to perform innovative and economical designs of various components. The main objective of this paper is to develop an effective method with the use of the Laplace inverse transform to describe the time dependent mechanical response of viscoelastic polymers. This general methodology is based on differential constitutive relations for viscoelastic polymers, avoiding the use of relaxation integral functions. As its application, the creep and relaxation properties of the materials are exhibited in the numerical examples.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Xutao Zhang ◽  
Mingyang Ren ◽  
Zhaobo Meng ◽  
Baoliang Zhang ◽  
Jinglong Li

Rock material is a kind of mineral assemblage with complex structural heterogeneity, whose mechanical behavior is strongly affected by water or moisture content. In this work, we carried out a series of laboratory tests to investigate the mechanical response (e.g., deformation, strength, and failure characteristics) of Yunnan limestone in natural and saturated states. Our test results show that (1) after saturation, the stiffness and strength of Yunnan limestone degenerate considerably. Compared with the natural condition, the elastic modulus, deformation modulus, and tensile modulus decrease by about 30% on average, and uniaxial compressive strength and tensile strength also decrease by about 15% and 20%, respectively. While Poisson’s ratio is less affected by water content, it can be regarded as a constant; (2) the elastic modulus and deformation modulus of Yunnan limestone are significantly affected by confining pressure, and the relationship between them and confining pressure satisfies the law of hyperbolic function; (3) the peak strength envelope of Yunnan limestone has significant nonlinear characteristics, which can be well described by generalized Hoek-Brown strength criterion. However, the generalized Hoek-Brown criterion does not apply to the residual strength, which shows a linearly increasing trend with the increasing confining pressure; (4) the failure modes of Yunnan limestone are significantly dependent on confining pressure but insensitive to water content. With the increasing confining pressure, the failure modes of Yunnan limestone transform from splitting failure, tension-shear mixed failure, single inclined plane shear failure to Y-shaped or X-shaped conjugated shear failure. The test results can provide important experimental data for the establishment of the constitutive model of Yunnan limestone, which will contribute to obtain more reliable results for stability assessment of Xianglu Mountain Tunnel.


2015 ◽  
Author(s):  
Walid Mohamed ◽  
Hee Seok Roh

The DOE/NNSA Conversion [1] Program in the US aims to minimize the use of high enrichment uranium in civilian applications. This initiative is being approached by converting research and test reactors from the use of highly enriched uranium (HEU) to low enrichment uranium (LEU, <20% 235U) with high density of uranium to achieve stable operation of converted reactors. Among variety of fuel materials investigated to serve in the conversion process, U-Mo based alloys have shown stable and acceptable swelling response under typical operation conditions of research and test reactors. For the conversion of high performance research reactors, a large number of irradiation experiments were conducted to evaluate the mechanical behavior of the U-10Mo monolithic mini-plate; however, it is difficult to investigate all design and operation variables with potential impact on the irradiation behavior of the fuel experimentally. Thus, this study performed Finite Element Analyses (FEA) on a 3-D monolithic plate by changing material properties of components. The material properties considered in this study included thermal, mechanical, and irradiation specific properties of the fuel, cladding, and liner. Among FEA results, higher Young’s modulus of cladding material caused a significant decrease in all stress values in the three sections of the monolithic mini-plate. On the other hand, variation in the Young’s modulus of Zr-liner showed the minimal effect on the overall mechanical response of the monolithic mini-plate. Results showed that increasing the yield stress of the cladding material directly caused a increase in the maximum stress observed in the cladding section by almost 40 %. Considering the thermal properties of materials in the monolithic plate, maximum and minimum stress in fuel foil were found to either increase or decrease in proportional with the coefficient of thermal expansion of the fuel material. However, variation in the coefficient of thermal expansion in the cladding section caused a remarkable increase in peak stresses in the fuel foil. While mechanical and thermal properties of the foil, liner, and cladding sections are known, other irradiation-dependent properties such as coefficient of irradiation creep of U-10Mo are not firmly determined to date. The mechanical response of L1P756 is being simulated with different values of the coefficient of irradiation creep and the observed “bulging” in the plate will be compared to available post-irradiation measurements. Thus, it will be possible to determine an accurate value of irradiation creep coefficient of U-10Mo which in turn would allow predicting its mechanical behavior under different irradiation conditions.


2015 ◽  
Vol 813 ◽  
pp. 220-239
Author(s):  
Wei Wang ◽  
Na Na Yang ◽  
Xiong Liang Yao ◽  
Dai Ning Fang

The cores have to be spliced in the manufacturing process of sandwich plate due to the processing technology, the influence of core splice, compared with integrated core, on mechanical behavior of sandwich plate were investigated through two experiments. Two styles of specimens (B-style and C-style) were taken into experiments in sequence which included two kinds of plate with different cores.Firstly, it was found in stiffness experiment that stiffness and strength of sandwich plate with splicing core were obviously weaker than that with integrated core, which mean the former performed larger deformation under the same predetermined load with higher strain and behaved lower ultimate bearing capacity. Meanwhile the failure modes were mainly sheet crushing collapse and there was no evident difference in the failure mode of the two styles specimens with different cores. It concluded that the cores splice reduced the stiffness in location of two core splicing but the effect on the failure mode was slight.Secondly, it was found in stability experiment that the mechanical behaviour was approximately linear under the predetermined axial load and the predetermined out-of-plane load and similarly bulking strength of the sandwich plate with splicing core was about 10%~15% lower than that with integrated core. Basically, delamination between sheet and core kept accompany with bulking of the plate each time and two styles specimens with different cores didn’t show evident differences in failure mode as well. It demonstrated the conclusion and that core splice accounted to make the specimens produced geometric imperfections which resulted in stiffness reduction.Thirdly, based on experiments it was clear that the mechanical behaviour of sandwich plates with splicing cores suffered from more obvious discreteness compared with that with integrated cores, which indicated that manufacturing technology had greater influence on the former and core splice should be avoided in some important location of structure.Lastly, numerical simulation method based on progressive damage analysis was also studied and good correlation with experimental results was obtained, which could well predict the mechanical behaviour of the sandwich plates with splicing core and integrated core.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 337
Author(s):  
Wojciech Zakrzewski ◽  
Maciej Dobrzynski ◽  
Wojciech Dobrzynski ◽  
Anna Zawadzka-Knefel ◽  
Mateusz Janecki ◽  
...  

Nanotechnology has gained importance in recent years due to its ability to enhance material properties, including antimicrobial characteristics. Nanotechnology is applicable in various aspects of orthodontics. This scientific work focuses on the concept of nanotechnology and its applications in the field of orthodontics, including, among others, enhancement of antimicrobial characteristics of orthodontic resins, leading to reduction of enamel demineralization or control of friction force during orthodontic movement. The latter one enables effective orthodontic treatment while using less force. Emphasis is put on antimicrobial and mechanical characteristics of nanomaterials during orthodontic treatment. The manuscript sums up the current knowledge about nanomaterials’ influence on orthodontic appliances.


2015 ◽  
Vol 1114 ◽  
pp. 9-12
Author(s):  
Alexandru Ghiban ◽  
Brandusa Ghiban ◽  
Cristina Maria Borţun ◽  
Nicolae Serban ◽  
Mihai Buzatu

Four compositions of some usually commercial dental alloys were investigated in order to determine the mechanical characteristics and fractographic analysis of tensile and bending tests surfaces. A correlation between chemical composition (either molybdenum or molybdenum and chromium contents) and mechanical characteristics (longitudinal modulus, tensile strength and elongation) were finally done.


2012 ◽  
Vol 217-219 ◽  
pp. 2381-2387
Author(s):  
Doru Romulus Pascu ◽  
Radu Alexandru Roşu ◽  
Iuliana Duma ◽  
Horia Daşcău

Non-alloyed P355NH steel according to EN 10028-3:2003 belongs to a group of fine-grained steels for pressure vessels being used in welded construction at decompression chamber for divers. Values of the chemical, structural and mechanical characteristics and steel toughness experimentally determined fit the analyzed steel in P355NH steel group according to EN 10028-3:2003. The toughness of the analyzed steel at the test temperature of -30°C is characterized by high values of fracture energy KV in longitudinal direction between 48 and 86 J and on transverse direction between 17 and 34J. Steel toughness at the test temperature of -30°C required by ABS standard (in Section 4/5.3 and Table 1) provides for breaking energy KV of min. 35J, with ductile fracture surfaces, value that is not respected at some lots of the three batches (A, B, C) of steel. Finally, based on the direct correlation established between HV10 hardness of the fine structure and the toughness it was made a selection of the lots of non-alloy steel P355NH which correspond to ABS norm for welded construction of the decompression chamber for divers


Sign in / Sign up

Export Citation Format

Share Document