Medical Video Processing

Author(s):  
Srijan Goswami ◽  
Urmimala Dey ◽  
Payel Roy ◽  
Amira Ashour ◽  
Nilanjan Dey

In today's medical environments, imaging technology is extremely significant to provide information for accurate diagnosis. An increasing amount of graphical information from high resolution 3D scanners is being used for diagnoses. Improved medical data quality become one of the major aims of researchers. This leads to the development of various medical modalities supported by cameras that can provide videos for the human body internal for surgical purposes and more information for accurate diagnosis. The current chapter studied concept of the video processing, and its application in the medical domain. Based on the highlighted literatures, it is convinced that video processing and real time frame will have outstanding value in the clinical environments.

2018 ◽  
pp. 1709-1725
Author(s):  
Srijan Goswami ◽  
Urmimala Dey ◽  
Payel Roy ◽  
Amira S. Ashour ◽  
Nilanjan Dey

In today's medical environments, imaging technology is extremely significant to provide information for accurate diagnosis. An increasing amount of graphical information from high resolution 3D scanners is being used for diagnoses. Improved medical data quality become one of the major aims of researchers. This leads to the development of various medical modalities supported by cameras that can provide videos for the human body internal for surgical purposes and more information for accurate diagnosis. The current chapter studied concept of the video processing, and its application in the medical domain. Based on the highlighted literatures, it is convinced that video processing and real time frame will have outstanding value in the clinical environments.


Nanoscale ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 3275-3284
Author(s):  
Huan Zhao ◽  
Qifeng Lin ◽  
Li Huang ◽  
Yunfeng Zhai ◽  
Yuan Liu ◽  
...  

Hydrogel microspheres sensitive to temperature as new potential signal enhancers and magnetic fluorescent nanoparticles as internal standards were used to establish a new CLIA method for the accurate diagnosis of cTnI in the human body.


2010 ◽  
Vol 66 (4) ◽  
pp. 389-392 ◽  
Author(s):  
Zbigniew Dauter

Diffraction data collection is the last experimental stage in structural crystallography. It has several technical and theoretical aspects and a compromise usually has to be found between various parameters in order to achieve optimal data quality. The influence and importance of various experimental parameters and their consequences are discussed in the context of different data applications, such as molecular replacement, anomalous phasing, high-resolution refinement or searching for ligands.


2016 ◽  
Vol 62 (1) ◽  
pp. 23-31 ◽  
Author(s):  
Adam Chromy

Abstract This paper deals with application of 3D scanning technology in medicine. Important properties of 3D scanners are discussed with emphasize on medical applications. Construction of medical 3D scanner according to these specifications is described and practical application of its use in medical volumetry is presented. Besides volumetry, such 3D scanner is usable for many other purposes, like monitoring of recovery process, ergonomic splint manufacturing or inflammation detection. 3D scanning introduces novel volumetric method, which is compared with standard methods. The new method is more accurate compared to present ones. Principles of this method are discussed in paper and its accuracy is evaluated and experimentally verified.


2019 ◽  
Vol 18 (4) ◽  
pp. 2286-2298
Author(s):  
Mohsen Jamalabdollahi ◽  
Seyed Zekavat ◽  
Kaveh Pahlavan

Radiocarbon ◽  
2004 ◽  
Vol 46 (1) ◽  
pp. 455-463 ◽  
Author(s):  
T H Donders ◽  
F Wagner ◽  
K van der Borg ◽  
A F M de Jong ◽  
H Visscher

Sub-fossil sections from a Florida wetland were accelerator mass spectrometry (AMS) dated and the sedimentological conditions were determined. 14C data were calibrated using a combined wiggle-match and 14C bomb-pulse approach. Repeatable results were obtained providing accurate peat chronologies for the last 130 calendar yr. Assessment of the different errors involved led to age models with 3–5 yr precision. This allows direct calibration of paleoenvironmental proxies with meteorological data. The time frame in which 14C dating is commonly applied can possibly be extended to include the 20th century.


2019 ◽  
Vol 107 ◽  
pp. 270-283 ◽  
Author(s):  
Vasileios C. Pezoulas ◽  
Konstantina D. Kourou ◽  
Fanis Kalatzis ◽  
Themis P. Exarchos ◽  
Aliki Venetsanopoulou ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 226 ◽  
Author(s):  
Long Peng ◽  
Chenggao Luo ◽  
Bin Deng ◽  
Hongqiang Wang ◽  
Yuliang Qin ◽  
...  

In this paper, we propose a phaseless terahertz coded-aperture imaging (PTCAI) method by using a single incoherent detector or an incoherent detection array. We at first analyze and model the system architecture, derive the matrix imaging equation, and then study the phase retrieval techniques to reconstruct the original target with high resolution. Numerical experiments are performed and the results show that the proposed method can significantly reduce the system complexity in the receiving process while maintaining high resolution imaging capability. Furthermore, the approach of using incoherent detection array instead of single detector is capable of decreasing the encoding and sampling times, and therefore helps to improve the imaging frame rate. In our future research, the method proposed in this paper will be experimentally tested and validated, and high-speed PTCAI at nearly real-time frame rates will be the main work.


2019 ◽  
Vol 126 (6) ◽  
pp. 1681-1686 ◽  
Author(s):  
Christopher J. Mayerl ◽  
Francois D. H. Gould ◽  
Laura E. Bond ◽  
Bethany M. Stricklen ◽  
Randal K. Buddington ◽  
...  

All mammals must breathe and breathe continuously from birth. Similarly, all mammals, including infants, have high functional demands for feeding. However, the pathway that food takes through the pharynx interrupts respiration. The coordination between swallowing and breathing is therefore critical for all infant mammals. Clinically, this coordination differs between term and preterm infants. However, the neurological mechanisms underlying this coordination and how it matures as infants grow are poorly understood. Here, we integrate high-resolution data from multiple physiologic processes across a longitudinal time frame to study suck-swallow-breathe dynamics in a preterm animal model, the infant pig. In doing so, we test the hypothesis that preterm birth will have an impact on some, but not all, behaviors associated with suck-swallow-breath performance. We hypothesize that coordination will be disrupted, reflecting incomplete connections in the brainstem. We found that preterm pigs became rhythmic and mature in sucking and swallowing behaviors, suggesting substantial postnatal maturation in the coordination of these behaviors. However, their ability to coordinate swallowing and breathing never developed. These results have implications for the nature of clinical care of human infants, as well as for how feeding processes develop in mammals. Clinically, they provide a foundation for developing interventions for preterm infants. Additionally, these results suggest that the lack of coordination between swallowing and breathing may be a significant factor in determining the minimum gestation time across mammals. NEW & NOTEWORTHY Preterm infants face a variety of challenges associated with safe feeding, but obtaining high-resolution longitudinal data to understand these challenges in humans is challenging. We used a pig model to acquire high-speed videofluoroscopic and respiratory inductance plethysmograph data throughout the nursing period to show that preterm birth does not have substantial impacts on the ability of infants to perform isolated behaviors. However, it does decrease the ability of preterm infants to coordinate among behaviors during feeding.


2017 ◽  
Vol 10 (5) ◽  
pp. 1665-1688 ◽  
Author(s):  
Frederik Tack ◽  
Alexis Merlaud ◽  
Marian-Daniel Iordache ◽  
Thomas Danckaert ◽  
Huan Yu ◽  
...  

Abstract. We present retrieval results of tropospheric nitrogen dioxide (NO2) vertical column densities (VCDs), mapped at high spatial resolution over three Belgian cities, based on the DOAS analysis of Airborne Prism EXperiment (APEX) observations. APEX, developed by a Swiss-Belgian consortium on behalf of ESA (European Space Agency), is a pushbroom hyperspectral imager characterised by a high spatial resolution and high spectral performance. APEX data have been acquired under clear-sky conditions over the two largest and most heavily polluted Belgian cities, i.e. Antwerp and Brussels on 15 April and 30 June 2015. Additionally, a number of background sites have been covered for the reference spectra. The APEX instrument was mounted in a Dornier DO-228 aeroplane, operated by Deutsches Zentrum für Luft- und Raumfahrt (DLR). NO2 VCDs were retrieved from spatially aggregated radiance spectra allowing urban plumes to be resolved at the resolution of 60  ×  80 m2. The main sources in the Antwerp area appear to be related to the (petro)chemical industry while traffic-related emissions dominate in Brussels. The NO2 levels observed in Antwerp range between 3 and 35  ×  1015 molec cm−2, with a mean VCD of 17.4 ± 3.7  ×  1015 molec cm−2. In the Brussels area, smaller levels are found, ranging between 1 and 20  ×  1015 molec cm−2 and a mean VCD of 7.7 ± 2.1  ×  1015 molec cm−2. The overall errors on the retrieved NO2 VCDs are on average 21 and 28 % for the Antwerp and Brussels data sets. Low VCD retrievals are mainly limited by noise (1σ slant error), while high retrievals are mainly limited by systematic errors. Compared to coincident car mobile-DOAS measurements taken in Antwerp and Brussels, both data sets are in good agreement with correlation coefficients around 0.85 and slopes close to unity. APEX retrievals tend to be, on average, 12 and 6 % higher for Antwerp and Brussels, respectively. Results demonstrate that the NO2 distribution in an urban environment, and its fine-scale variability, can be mapped accurately with high spatial resolution and in a relatively short time frame, and the contributing emission sources can be resolved. High-resolution quantitative information about the atmospheric NO2 horizontal variability is currently rare, but can be very valuable for (air quality) studies at the urban scale.


Sign in / Sign up

Export Citation Format

Share Document