Economic and Ecologic Analysis of Wind Energy as Steps in Starting a New Business

Wind energy has a long history but in the last decades the technological development and the increasing energy efficiency push this business on a top position for the installed renewable energy capacity worldwide. For a better understanding of the economic and ecologic analysis of the business into the wind energy sector, in this chapter, are presented the main principles and energy concepts related to renewable energy, especially for wind energy. The analysis is focused on the importance of the main elements of a wind turbine and its costs structure. The wind turbine is analyzed also along its lifecycle in order to identify the environmental impact from the row material extraction to the end of lifetime. The main objective of this chapter is to understand the importance of wind energy as a renewable energy and how to use the kinetic energy of wind in order to generate electric energy taking into account its efficiency and also its impact on the environment.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Antoine Riaud ◽  
Cui Wang ◽  
Jia Zhou ◽  
Wanghuai Xu ◽  
Zuankai Wang

AbstractElectric energy generation from falling droplets has seen a hundred-fold rise in efficiency over the past few years. However, even these newest devices can only extract a small portion of the droplet energy. In this paper, we theoretically investigate the contributions of hydrodynamic and electric losses in limiting the efficiency of droplet electricity generators (DEG). We restrict our analysis to cases where the droplet contacts the electrode at maximum spread, which was observed to maximize the DEG efficiency. Herein, the electro-mechanical energy conversion occurs during the recoil that immediately follows droplet impact. We then identify three limits on existing droplet electric generators: (i) the impingement velocity is limited in order to maintain the droplet integrity; (ii) much of droplet mechanical energy is squandered in overcoming viscous shear force with the substrate; (iii) insufficient electrical charge of the substrate. Of all these effects, we found that up to 83% of the total energy available was lost by viscous dissipation during spreading. Minimizing this loss by using cascaded DEG devices to reduce the droplet kinetic energy may increase future devices efficiency beyond 10%.


2021 ◽  
Author(s):  
◽  
Ramesh Kumar Behara

The growing needs for electric power around the world has resulted in fossil fuel reserves to be consumed at a much faster rate. The use of these fossil fuels such as coal, petroleum and natural gas have led to huge consequences on the environment, prompting the need for sustainable energy that meets the ever increasing demands for electrical power. To achieve this, there has been a huge attempt into the utilisation of renewable energy sources for power generation. In this context, wind energy has been identified as a promising, and environmentally friendly renewable energy option. Wind turbine technologies have undergone tremendous improvements in recent years for the generation of electrical power. Wind turbines based on doubly fed induction generators have attracted particular attention because of their advantages such as variable speed, constant frequency operation, reduced flicker, and independent control capabilities for maximum power point tracking, active and reactive powers. For modern power systems, wind farms are now preferably connected directly to the distribution systems because of cost benefits associated with installing wind power in the lower voltage networks. The integration of wind power into the distribution network creates potential technical challenges that need to be investigated and have mitigation measures outlined. Detailed in this study are both numerical and experimental models to investigate these potential challenges. The focus of this research is the analytical and experimental investigations in the integration of electrical power from wind energy into the distribution grid. Firstly, the study undertaken in this project was to carry out an analytical investigation into the integration of wind energy in the distribution network. Firstly, the numerical simulation was implemented in the MATLAB/Simulink software. Secondly, the experimental work, was conducted at the High Voltage Direct Centre at the University of KwaZulu-Natal. The goal of this project was to simulate and conduct experiments to evaluate the level of penetration of wind energy, predict the impact on the network, and propose how these impacts can be mitigated. From the models analysis, the effects of these challenges intensify with the increased integration of wind energy into the distribution network. The control strategies concept of the doubly fed induction generator connected wind turbine was addressed to ascertain the required control over the level of wind power penetration in the distribution network. Based on the investigation outcomes we establish that the impact on the voltage and power from the wind power integration in the power distribution system has a goal to maintain quality and balance between supply and demand.


Author(s):  
R. S. Amano ◽  
Ryan J. Malloy

Recently there has been an increase in the demand for the utilization of clean renewable energy sources. This is a direct result of a rise in oil prices and an increased awareness of human induced climate change. Wind energy has been shown to be one of the most promising sources of renewable energy. With current technology, the low cost of wind energy is competitive with more conventional sources of energy such as coal. This however is only true in areas of high wind density. These areas are not as abundant and therefore the number of profitable sites is limited. This paper explores the possibility increasing the number of profitable sites by optimizing wind turbine blade design for low wind speed areas. The two methods of optimization that are investigated are first, optimizing the angle of attack and chord length for a given airfoil cross section at different positions along the blade and second implementing a swept blade profile. The torque generated from a blade using only the first optimization technique is compared to that generated from a blade using both techniques as well as that generated by NTK500/41 turbine using LM19.1 blades. Performance will be investigated using the CFD solver FLUENT.


Author(s):  
P. Venkaiah ◽  
B. K. Sarkar

Abstract The advantages of renewable energy sources are available freely in nature, inexhaustible, produce either no or little pollution and low gestation period. Among all renewable energy sources, wind energy has become one of the leading resources for power production in the world as well as in the India. According to WWEA, the wind turbine installation capacity in the world has been reached over 539.291GW by the end of 2017. The entire wind power installed capacity by the end of 2017 covers more than 5% of global demand of electricity. In India, the present wind power installation capacity on October, 2017 was over 32.7GW and wind energy contribution is 55% of the total renewable energy capacity in the country. Inspite of having sharp growth rate in wind in India, only a fraction of wind energy has been tapped until now out of 302 GW wind potential which is available above 100 m height on shore. Practical horizontal axis wind turbine converts kinetic energy in the wind into useful energy by using airfoil blades. Blade element momentum (BEM) theory becomes very popular due to its simplicity in mathematical calculation as well as accuracy. Hydraulic pitch actuation system has certain advantages due to its versatility, ability to produce constant force and torque irrespective of the disturbances outside of the system, ease and accuracy of control, simplicity, safety and economy. In the present study a semi rotary actuator has been utilized for turbine pitch actuation. In order to extract maximum power from available wind, fractional order PID controller (FOPID) has been developed for pitch control of wind turbine rotor blade. The performances of PID as well as FOPID controller have been compared with available wind data. The performance of FOPID controller was satisfactory compare to PID controller.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6700
Author(s):  
Nuria Novas ◽  
Alfredo Alcayde ◽  
Isabel Robalo ◽  
Francisco Manzano-Agugliaro ◽  
Francisco G. Montoya

Energy efficiency and management is certainly one of the key drivers of human progress. Thus, the trends in the energy research are a topic of interest for the scientific community. The aim of this study is to highlight global research trends in this field through the analysis of a scientific journal indexed exclusively in the energy and fuels category. For this purpose, a journal has been selected that is in the center of the category considering its impact factor, which is only indexed in this category and of open access, Energies of the publisher MDPI. Therefore, a bibliometric analysis of all the contents of the journal between 2008 and 2020, 13,740 documents published, has been carried out. Analyzing the articles that are linked to each other by their citations, 14 clusters or research topics have been detected: smart grids; climate change–electric energy community; energy storage; bioenergy sources; prediction algorithms applied to power; optimization of the grid link for renewable energy; wind power; sustainability of power systems; hydrocarbon improvements; conversion of thermal/electrical energy; electric motor advancements; marine renewable energy; hydropower and energy storage; and preventive techniques in power transformers. The main keywords found were electric vehicle, renewable energy, microgrid, smart grid, and energy efficiency. In short, energy research remains necessary to meet the future challenge of sustainable energy with high efficiency and the exploration of new renewable resources, all for increasingly sustainable cities.


2014 ◽  
Vol 1008-1009 ◽  
pp. 179-182
Author(s):  
Iveta Gressová

Our planet gives us many mineral sources, but they have a big disadvantage. They are finite. Non-renewable energy sources are enough only for decades, exceptionally for centuries. Current generation is aware of the importance of using other energy sources, such as sunlight, wind, rain, tides, waves and geothermal heat. These energy sources are renewable. It means that they come from sources, which are naturally replenished on a human timescale. One of these sources is wind energy. Use of this kind of energy source needs an initial investment, but it can reduce cost of running a household and other sectors. This article is about Savonius wind turbine and its use for the needs of public lighting.


2016 ◽  
Vol 31 (2) ◽  
Author(s):  
Puleng Matatiele ◽  
Mary Gulumian

AbstractRenewable energy technologies (wind turbines, solar cells, biofuels, etc.) are often referred to as ‘clean’ or ‘green’ energy sources, while jobs linked to the field of environmental protection and energy efficiency are referred to as ‘green’ jobs. The energy efficiency of clean technologies, which is likely to reduce and/or eliminate reliance on fossil fuels, is acknowledged. However, the potential contribution of green technologies and associated practices to ill health and environmental pollution resulting from consumption of energy and raw materials, generation of waste, and the negative impacts related to some life cycle phases of these technologies are discussed. Similarly, a point is made that the green jobs theme is mistakenly oversold because the employment opportunities generated by transitioning to green technologies are not necessarily safe and healthy jobs. Emphasis is put on identifying the hazards associated with these green designs, assessing the risks to the environment and worker health and safety, and either eliminating the hazards or minimizing the risks as essential elements to the design, construction, operation, and maintenance of green technologies. The perception that it is not always economically possible to consider all risk factors associated with renewable energy technologies at the beginning without hampering their implementation, especially in the poor developing countries, is dismissed. Instead, poor countries are encouraged to start implementing environmentally sound practices while transitioning to green technologies in line with their technological development and overall economic growth.


2019 ◽  
Vol 10 (1) ◽  
pp. 84-93
Author(s):  
Redaksi Tim Jurnal

This research discusses the fulfillment of the electricity needs of remote communities that are closely related to electrification ratios. Electrification ratios in some isolated areas and scattered islands in Indonesia are still very low. To date, most of the electricity needs in Indonesia is still supplied by Diesel Power Electricity Generator (PLTD) which uses diesel as its fuel. Therefore, it is necessary the utilization of renewable energy as one step to fulfill the electrical energy needs. This research studies about the utilization of wind energy with PLTB by using low speed wind turbine to fulfill the electricity needs of remote communities and scattered islands in Indonesia. NT1000W is the latest technology of low speed wind turbine that can operate at wind speed of 1 m/d up to 60 m/d appropriate to the wind conditions in Indonesia. Testing conducted in west Sumatera particularly in Padang city and Kapo-Kapo Island provide a feasibility of PLTB NT1000W technically and financially.


Author(s):  
Hasan Huseyin Yildirim ◽  
Sakir Sakarya

Energy has become one of the most important building blocks of many changes in the world, and it still maintains this quality. The demand for natural resources and energy continues to increase  daily. For this reason, the supply of reliable and sustainable energy has become an important issue that concerns and occupies mankind. Of the renewable energy sources, wind energy is a clean, reliable and inexhaustible source of energy with low operating costs. Turkey is a rich nation in terms of wind energy potential. In this context, the profitability of investments made in utilising domestic and renewable energy potential is important. Investment efficiency is a very important issue before and during the investment period due to the fact that wind energy investments are high cost investments. In this study, a solution will be proposed for the replacement of inefficient wind turbines which have been installed. In the ideal solution of the issue, the remaining lifetime of the wind turbine which is to be replaced and capacity utilization at the new location of the turbine will be used as key input factors. The results showed that it was important for the relocation decision to be made early for the investment to be more profitable. In the event of delayed decisions to relocate the turbine, a high capacity factor is expected in the new location. If a high capacity factor is not achieved, the relocation of the turbine will be meaningless and losses will be incurred for the investor. Also according to the results of the analysis, in the first two years, the turbine operating at a low capacity of 19% and 17% is profitable if it works at 26% capacity until the end of its economic life when change is made in the third year.


2018 ◽  
Vol 4 (2) ◽  
pp. 93
Author(s):  
Delffika - Canra ◽  
Meri Rahmi ◽  
Emin Haris

Generally, wind energy sources in Indonesia's coastal areas is one of the potential sources of renewable energy (renewable energy resources) which are abundant, environmentally friendly and renewable. Savonius wind turbines can produce relatively high torque even at low wind speeds. Because it is very well developed to produce electrical energy. To get a large electric power, a large turbine construction is also needed which also certainly requires a large cost. For this reason, it is necessary to develop the dimensions of this wind turbine construction which is known as aspect ratio (Ar). The Ar that has been researched is the blade section, and other values. While the arch depth or the length of the blade arc in U -type is still likely to be researched. Therefore, it is necessary to do research on the U-type blade arc to get greater power than before. In addition to the experimental method with a prototype of the U type Savonius wind turbine with a number of 2 blades, a software-based simulation method will be carried out to analyze the air flow on the wind turbine blade. Parameters varied only with the aspect ratio of the arc length and blade cross section width, other parameters follow the previous research. This analysis will be a comparative data with experimental methods. The expected simulation results obtain the best aspect ratio (Ar) blade in capturing wind energy.


Sign in / Sign up

Export Citation Format

Share Document