Available Mechanical and Chemical Properties of Natural Fibers

Natural fibers are so attracting in comparison to synthetic fibers since they exhibit good properties like the low cost, good specific mechanical properties and their requirements of low energy during production. However, natural fibers hold some drawbacks which must be consider in comparison to the synthetic fibers like their high moisture absorption, low mechanical properties, heat resistance and durability and the variation in their prices and quality. In order to choose the suitable natural fiber for the selected application, their mechanical and chemical properties can be helpful for taking the right decision. In this chapter, a wide research is done in order to provide as much as possible the available mechanical and chemical properties of natural fibers of bast, leaf, seed, stalk, and wood categories from the most trusted publications. The specific mechanical properties of natural fibers are then calculated for a better comparison at the level of composites.

2020 ◽  
Vol 9 (1) ◽  
pp. 2744-2751

Natural fiber reinforced composites are gaining popularity over conventional materials due its low cost, easy accessibility, non toxicity and most important feature - the biodegradability. Since broad varieties of natural fibers are available on earth, hence their merits can be incorporated in one by means of hybridization. Matured sponge gourd, which turns into a net structured fibrous mass on sun drying, is amalgamated with coconut coir as reinforcement along with epoxy resin as matrix material in a composite. The present study was carried out to explore the impact of change in weight percentages of sponge gourd fiber and coir on the mechanical properties and moisture affinity. The alkali treated fibers were turned into composites by dint of Hand Layup technique. The various mechanical properties were evaluated according to ASTM protocol. After the successful conclusion of the experiments, it was found that composite with maximum weight percentage of coir showed superlative tensile and impact strength whereas the composite with highest sponge fibre content showed maximum flexural strength. The composite with equal sponge fiber-coir weight percentage displayed lowest affinity towards moisture.


Author(s):  
C. Krishnamurthy ◽  
V. Chandran ◽  
S. Dhanasekar

Natural fibers are emerging as a better component than synthetic fibers in many occasions such as in automotive and several other products. There major advantages are low cost, biodegradability, lower density and abundant in nature. Many natural fibers are extracted from agricultural waste and plants. These fibers are bonded together with help of polymer matrix. Mostly synthetic polymers are used because of its high adhesion characteristics. These fibers are processed in mercerization technique to reduce moisture absorption characteristic and waxy layer on the fiber. this work is based on developing a new set of NFRP consisting of luffa, almond and ground nut and determining the best volume fraction for better reinforcement. The composites are fabricated by hand layup technique and their mechanical characteristic for five different volume fractions are evaluated by simple testing methods such as hardness, impact, tensile, density, moisture absorption test.


2020 ◽  
pp. 002199832097519
Author(s):  
Fatma Naiiri ◽  
Allègue Lamis ◽  
Salem Mehdi ◽  
Zitoune Redouane ◽  
Zidi Mondher

Natural fibers are increasingly used in composites because of their low cost and good mechanical properties. Cement reinforced with natural fibersis contemplates as a new generation of construction materials with superior mechanical and thermal performance. This study of three sizes’effect of Doum palm fiber explores the mortar’s behavior reinforced with different fiber ratio. The aim is to determine the optimal addition to improve mechanical and thermal properties of natural fiber reinforced cements. Physical, mechanical and thermal properties of composite are examined. Tensile properties of Doum fibers are verified to determine their potential as reinforced material. Findings prove that the use of alkali-treated Doum fiber as reinforcement in cement mortar composite leads to the upgrading of the mechanical properties including thermo-physical properties against composites reinforced with raw fibers and control cement mortars. While, the compression and flexural strength of the cement mortar reinforced with alkali-treated Doum fiber with diameter 0.3 mm (CT3) are metered to be 11.11 MPa, 5.22 MPa, respectively for fiber content 0.5%. Additionally, based on thermo-physical tests, it is assessed that the thermal conductivity and diffusivity decrease for cement mortar reinforced with Doum fiber with diameter 0.2 mm (CT2).


2015 ◽  
Vol 754-755 ◽  
pp. 235-239
Author(s):  
A. Zuliahani ◽  
H.D. Rozman ◽  
Abdul Rahman Rozyanty

The use of natural fiber as reinforcement in polymer composites has gained importance recently due to environmental concern and its abundance availability from agricultural crops and wood industry [1]. Many advantages offered by natural fibers over synthetic fibers include low density, greater deformability, low cost per unit volume, recyclability and biodegradability [2-3]. In addition, the mechanical properties of natural fibers such as flax, hemp, jute, sisal and kenaf are comparable with glass fiber in respect of strength and modulus [4]. Hence, many studies have been carried out to replace the synthetic fiber for composite preparation.


2019 ◽  
Vol 8 (3) ◽  
pp. 2450-2453

Usage of Natural Fiber Composites (NFC) is increased rapidly due to the bio degradability nature of the fibers. These natural fibers are mixed with synthetic fibers to obtain better mechanical properties. In this study, pine apple and glass fiber reinforced epoxy composites are developed and their mechanical properties were evaluated. Composites were prepared by varying the fibers content and by using hand layup process with glass moulds of size 160 x 160 x 3 mm3 . The obtained laminates were sliced as per the ASTM criterion to test the properties. Higher glass fiber content in the composite specimen obtained higher mechanical properties. The composites can be utilized for the purpose of manufacturing components like doors panels, desks, roof tops etc.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1250 ◽  
Author(s):  
Robert E. Przekop ◽  
Maciej Kujawa ◽  
Wojciech Pawlak ◽  
Marta Dobrosielska ◽  
Bogna Sztorch ◽  
...  

With the development of 3D printing technology, there is a need to produce printable materials with improved properties, e.g., sliding properties. In this paper, the authors present the possibilities of producing composites based on biodegradable PLA with the addition of graphite. The team created composites with the following graphite weight contents: 1%, 2.5%, 5%, 7.5%, and 10%. Neat material was also subjected to testing. Tribological, mechanical, and chemical properties of the mentioned materials were examined. Measurements were also made after keeping the samples in ageing and climatic ovens. Furthermore, SEM observations of samples before and after friction tests were carried out. It was demonstrated that increasing graphite content caused a significant decrease in wear (PLA + 10% graphite had a wear rate three times lower than for a neat material). The addition of graphite did not adversely affect most of the other properties, but it ought to be noted that mechanical properties changed significantly. After conditioning in a climatic oven PLA + 10% graphite has (in comparison with neat material) 11% lower fracture stress, 47% lower impact strength, and 21% higher Young’s modulus. It can be certainly stated that the addition of graphite to PLA is a step towards obtaining a material that is low-cost and suitable for printing sliding spare parts.


Author(s):  
Sergio Pons Ribera ◽  
Rabah Hamzaoui ◽  
Johan Colin ◽  
Benitha Vasseur ◽  
Laetitia Bessette ◽  
...  

This work, which is part of the FIBRABETON project, aims to anti-fissuration screed formulations proposition based on natural fibers and comparing these formulations to a synthetic fiber-screed formulation. Different natural fiber (hemp, flax, miscanthus and bamboo) with contents rangingfrom 0.4% to 0.8% were tested. The spread (slump), the shrinkage and mechanical strength (flexural and compressive) studies were carried out. SEM images of natural fibers and natural fibers screed formulation were analyzed. Overall, it is found that all natural fibers screed formulations tested, have shown better behaviour than the synthetic fibers screed formulation in point of view workability, shrinkage and mechanical properties. The lowest shrinkage value is found in the case of the H5 (5 mm long hemp fibers) screed formulation. Generally speaking, the mechanical strength values (flexural and compressive) are more or less similar between natural soft fibers (hemp and flax) and rigid fibers (miscanthus and bamboo). Taking in account slump, shrinkage and mechanical behavior, the proposed good compromise in this work is the H5 screed formulation.


2019 ◽  
Vol 1 (6) ◽  
pp. 503-508
Author(s):  
Tharunkumar N ◽  
Anand G

The present investigation addresses the external strengthening of reinforced concrete (RC) T-beams using jute fiber laminates. An experimental study is mainly carried out to study the change in structural behaviour of RC T-beams using externally wrapped jute fiber laminates, to enhance the shear and flexural capacity of the beams. The effect of pattern and orientation of the strengthening fabric on the shear capacity of the strengthened beams will be examined. RC T-beams with minimum shear reinforcement is designed and then external confinement using jute fiber laminates is carried out using epoxy resin. The layer confinement is executed to study and analyze the behaviour of confined beams with respect to control beam. Experimental results showing the advantage of beam strengthened using the various lay-ups of jute fiber are to be discussed. For all developed composites, experimental results revealed that the tensile properties of the developed composites are strongly dependent on the tensile strength of jute fiber and that the tensile properties of jute fiber are very much defect sensitive. Jute as a natural fiber is eco-friendly, low cost, versatile in textile fields and has moderate mechanical properties, which replaced several synthetic fibers in development of many composite materials. However, the hydrophilic nature of the jute fiber affects the mechanical properties of the developed composites. As a result to arrest crack and improve the strength of beam.


Author(s):  
Pantea Kooshki ◽  
Tsz-Ho Kwok

This paper is a review on mechanical characteristics of natural fibers reinforced elastomers (both thermoplastics and thermosets). Increasing environmental concerns and reduction of petroleum resources attracts researchers attention to new green eco-friendly materials. To solve these environmental related issues, cellulosic fibers are used as reinforcement in composite materials. These days natural fibers are at the center of attention as a replacement for synthetic fibers like glass, carbon, and aramid fibers due to their low cost, satisfactory mechanical properties, high specific strength, renewable resources usage and biodegradability. The hydrophilic property of natural fibers decreases their compatibility with the elastomeric matrix during composite fabrication leading to the poor fiber-matrix adhesion. This causes low mechanical properties which is one of the disadvantages of green composites. Many researches have been done modifying fiber surface to enhance interfacial adhesion between filler particles and elastomeric matrix, as well as their dispersion in the matrix, which can significantly affect mechanical properties of the composites. Different chemical and physical treatments are applied to improve fiber/matrix interlocking.


2001 ◽  
Vol 702 ◽  
Author(s):  
Prabhu Kandachar ◽  
Rik Brouwer

ABSTRACTAvailable as agricultural resources in many countries, natural fibers, such as flax, hemp, kenaf, exhibit mechanical properties comparable to those of synthetic fibers like glass. But they are lighter, biodegradable, and are often claimed to be less expensive. Composites with these natural fibers have the potential to be attractive alternative to synthetic fiber composites. The natural fibers, however, exhibit more scatter in their properties, are thermally less stable and are sensitive to moisture absorption. The choice of matrix to reinforce with these fibers therefore becomes critical.Currently, synthetic non-biodegradable polymers, such as polypropylene, polyester, etc., are being explored as matrix materials, for applications in sectors like automobiles and buildings. Biodegradable polymers, if made available in sufficient quantities at affordable prices, pave way for bio-composites in future. With both matrix and fibers being biodegradable, bio-composites become attractive candidates from the environment point of view.Extensive and reliable property data on natural fiber composites and/or on bio-composites, are still lacking, making product design with these materials rather tedious. Once the database is available, design & manufacture of products with natural fiber composites and biocomposites offer several opportunities and challenges.


Sign in / Sign up

Export Citation Format

Share Document