Investigation on Mechanical Characteristics of Luffa Natural Fiber Reinforced Polymer Composite Materials

Author(s):  
C. Krishnamurthy ◽  
V. Chandran ◽  
S. Dhanasekar

Natural fibers are emerging as a better component than synthetic fibers in many occasions such as in automotive and several other products. There major advantages are low cost, biodegradability, lower density and abundant in nature. Many natural fibers are extracted from agricultural waste and plants. These fibers are bonded together with help of polymer matrix. Mostly synthetic polymers are used because of its high adhesion characteristics. These fibers are processed in mercerization technique to reduce moisture absorption characteristic and waxy layer on the fiber. this work is based on developing a new set of NFRP consisting of luffa, almond and ground nut and determining the best volume fraction for better reinforcement. The composites are fabricated by hand layup technique and their mechanical characteristic for five different volume fractions are evaluated by simple testing methods such as hardness, impact, tensile, density, moisture absorption test.

Natural fibers are so attracting in comparison to synthetic fibers since they exhibit good properties like the low cost, good specific mechanical properties and their requirements of low energy during production. However, natural fibers hold some drawbacks which must be consider in comparison to the synthetic fibers like their high moisture absorption, low mechanical properties, heat resistance and durability and the variation in their prices and quality. In order to choose the suitable natural fiber for the selected application, their mechanical and chemical properties can be helpful for taking the right decision. In this chapter, a wide research is done in order to provide as much as possible the available mechanical and chemical properties of natural fibers of bast, leaf, seed, stalk, and wood categories from the most trusted publications. The specific mechanical properties of natural fibers are then calculated for a better comparison at the level of composites.


2015 ◽  
Vol 766-767 ◽  
pp. 173-177
Author(s):  
J.M. Prabhudass ◽  
K. Palanikumar

Composite materials are preferred in all engineering applications, nowadays, because of their superior properties over the traditional materials. Among Composite materials, Natural fiber reinforced polymer finds rapid development in Industrial applications and many areas of research. The main advantageous features of these composites are Renewability, Biodegradability and low cost. They are less dense and also easily available. These Natural fibers replace synthetic fibers in many important applications like Automobiles, Aerospace, etc. This paper reviews the research work carried on different types of Natural fibers reinforced polymer along with their preparation and properties, especially Sisal and Banana fibers.


2015 ◽  
Vol 754-755 ◽  
pp. 235-239
Author(s):  
A. Zuliahani ◽  
H.D. Rozman ◽  
Abdul Rahman Rozyanty

The use of natural fiber as reinforcement in polymer composites has gained importance recently due to environmental concern and its abundance availability from agricultural crops and wood industry [1]. Many advantages offered by natural fibers over synthetic fibers include low density, greater deformability, low cost per unit volume, recyclability and biodegradability [2-3]. In addition, the mechanical properties of natural fibers such as flax, hemp, jute, sisal and kenaf are comparable with glass fiber in respect of strength and modulus [4]. Hence, many studies have been carried out to replace the synthetic fiber for composite preparation.


2020 ◽  
pp. 325-327
Author(s):  
Sumesh K R ◽  
Kanthavel K ◽  
Saikrishnan G

The applications of natural fiber composites have enormously increased due to the high availability, eco-friendly nature and practical applications of the composites. In this review different fiber combinations using natural fiber and synthetic fibers have been investigated and found with interesting results. The hybrid nature of fiber reinforcement adds to the mechanical properties of polymer-based composites. The hybridization using more than one fiber reduces the surface deformations in the polymer matrix and enhanced the bonding ability of polymer composites. The alkali treatment was the effective surface treatment process for improving the cellulosic nature with good crystalline nature, good bonding ability with the polymer matrix, this adds to the properties of polymer-based composites. The crystallinity index of 43-68 % were observed in surface treated natural fibers.


2019 ◽  
Vol 948 ◽  
pp. 181-185
Author(s):  
Heru Santoso Budi Rochardjo ◽  
Muhammad Ridlo

In the last decades, natural fiber composites have received much attention as important structural materials for lightweight components in automotive, and space industries because of low density, high specific strength, and environment-friendly materials. Some natural fibers, however, still not applied in more useful structure, one of which is the frond fiber of snake fruit (salacca zalacca). This fiber is usually just burned or fired as the agricultural waste. The present paper presents the result of the development of frond salacca fiber as the wear component of natural fiber reinforced phenolic. In this composite, the fiber and the phenolic are in the form of powder. The variation of fiber volume fraction was used as the main factor in the tribology characteristics of the composite. The specific wear and also the hardness is then compared to that of the existed commercially available motorbike brake pad as a comparison.


2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Vignesh Sekar ◽  
Mohammad Hosseini Fouladi ◽  
Satesh Narayana Namasivayam ◽  
Sivakumar Sivanesan

Natural fibers and their composites are being widely used in almost all the applications in this modern era. However, the properties of natural fibers have to be enhanced in order to compete with synthetic fibers. This review paper opens up additive manufacturing, as a novel method for developing an acoustic panel using natural fiber composites with enhanced mechanical and acoustical properties. This approach will help to replace synthetic-based acoustic absorbers with biodegradable composite panels in acoustic applications. This review also covers, poly(lactic acid) as a polymer matrix and its advantages, the available variety of natural fibers as reinforcement in terms of mechanical and acoustical properties. The natural fiber-based filaments used in additive manufacturing and acoustic panels made from the available natural fibers are also elaborated here. This review shows the importance of additive manufacturing and its application to develop novel acoustic panels made of agricultural waste.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1920 ◽  
Author(s):  
Fernanda Santos da Luz ◽  
Fabio da Costa Garcia Filho ◽  
Michelle Souza Oliveira ◽  
Lucio Fabio Cassiano Nascimento ◽  
Sergio Neves Monteiro

Natural-fiber-reinforced polymer composites have recently drawn attention as new materials for ballistic armor due to sustainability benefits and lower cost as compared to conventional synthetic fibers, such as aramid and ultra-high-molecular-weight polyethylene (UHMWPE). In the present work, a comparison was carried out between the ballistic performance of UHMWPE composite, commercially known as Dyneema, and epoxy composite reinforced with 30 vol % natural fibers extracted from pineapple leaves (PALF) in a hard armor system. This hard armor system aims to provide additional protection to conventional level IIIA ballistic armor vests, made with Kevlar, by introducing the PALF composite plate, effectively changing the ballistic armor into level III. This level of protection allows the ballistic armor to be safely subjected to higher impact projectiles, such as 7.62 mm caliber rifle ammunition. The results indicate that a hard armor with a ceramic front followed by the PALF/epoxy composite meets the National Institute of Justice (NIJ) international standard for level III protection and performs comparably to that of the Dyneema plate, commonly used in armor vests.


2001 ◽  
Vol 702 ◽  
Author(s):  
Prabhu Kandachar ◽  
Rik Brouwer

ABSTRACTAvailable as agricultural resources in many countries, natural fibers, such as flax, hemp, kenaf, exhibit mechanical properties comparable to those of synthetic fibers like glass. But they are lighter, biodegradable, and are often claimed to be less expensive. Composites with these natural fibers have the potential to be attractive alternative to synthetic fiber composites. The natural fibers, however, exhibit more scatter in their properties, are thermally less stable and are sensitive to moisture absorption. The choice of matrix to reinforce with these fibers therefore becomes critical.Currently, synthetic non-biodegradable polymers, such as polypropylene, polyester, etc., are being explored as matrix materials, for applications in sectors like automobiles and buildings. Biodegradable polymers, if made available in sufficient quantities at affordable prices, pave way for bio-composites in future. With both matrix and fibers being biodegradable, bio-composites become attractive candidates from the environment point of view.Extensive and reliable property data on natural fiber composites and/or on bio-composites, are still lacking, making product design with these materials rather tedious. Once the database is available, design & manufacture of products with natural fiber composites and biocomposites offer several opportunities and challenges.


2018 ◽  
Vol 37 (24) ◽  
pp. 1435-1455 ◽  
Author(s):  
Mohammad ZR Khan ◽  
Sunil K Srivastava ◽  
MK Gupta

In recent years, researchers and scientists are facing problems in terms of environmental imbalance and global warming owing to numerous use of composite materials prepared by synthetic fibers and petrochemical polymers. Hence, an increasing attention has been devoted to the research and development of polymer composites reinforced with the natural fibers. The natural fibers are the most suitable alternative of synthetic fibers due to their biodegradability, eco-friendliness and acceptable mechanical properties. The natural fibers are attracting the researchers and scientists to exploit their properties by amalgamating them with the polymer. The properties of natural fiber reinforced polymer composites mainly depend upon various factors such as properties of fibers and matrices, fiber loading percentage, size and orientation of fibers, stacking sequences, degree of interfacial bonding, fiber surface treatments, hybridization and incorporation of additives and coupling agents. Tensile and flexural tests are the most important investigations to predict the applications of the materials. A good number of research has been carried out on tensile and flexural properties of natural fiber reinforced polymer composites. In this paper, a review on tensile and flexural properties of natural fiber reinforced polymer composites in terms of effects of fiber weight fraction, geometry, surface treatments, orientations and hybridization is presented. Moreover, recent applications of natural fiber reinforced polymer composites are also presented in this study.


2020 ◽  
Vol 12 (18) ◽  
pp. 7683
Author(s):  
Mohamad Alhijazi ◽  
Babak Safaei ◽  
Qasim Zeeshan ◽  
Mohammed Asmael ◽  
Arameh Eyvazian ◽  
...  

Natural fiber composites (NFCs) are an evolving area in polymer sciences. Fibers extracted from natural sources hold a wide set of advantages such as negligible cost, significant mechanical characteristics, low density, high strength-to-weight ratio, environmental friendliness, recyclability, etc. Luffa cylindrica, also termed luffa gourd or luffa sponge, is a natural fiber that has a solid potential to replace synthetic fibers in composite materials in diverse applications like vibration isolation, sound absorption, packaging, etc. Recently, many researches have involved luffa fibers as a reinforcement in the development of NFC, aiming to investigate their performance in selected matrices as well as the behavior of the end NFC. This paper presents a review on recent developments in luffa natural fiber composites. Physical, morphological, mechanical, thermal, electrical, and acoustic properties of luffa NFCs are investigated, categorized, and compared, taking into consideration selected matrices as well as the size, volume fraction, and treatments of fibers. Although luffa natural fiber composites have revealed promising properties, the addition of these natural fibers increases water absorption. Moreover, chemical treatments with different agents such as sodium hydroxide (NaOH) and benzoyl can remarkably enhance the surface area of luffa fibers, remove undesirable impurities, and reduce water uptake, thereby improving their overall characteristics. Hybridization of luffa NFC with other natural or synthetic fibers, e.g., glass, carbon, ceramic, flax, jute, etc., can enhance the properties of the end composite material. However, luffa fibers have exhibited a profuse compatibility with epoxy matrix.


Sign in / Sign up

Export Citation Format

Share Document