Litter Production and Decomposition in Tropical Forest

Author(s):  
Sumit Chakravarty ◽  
Prakash Rai ◽  
Vineeta ◽  
Nazir A. Pala ◽  
Gopal Shukla

Plant litter production and decomposition is a crucial ecosystem process that defines and governs the plant-soil relationships by regulating the nutrient turnover and the build-up of soil organic matter. Litter is the principal source of organic matter for soils in the forest ecosystem. The litter, upon decomposition, makes available essential nutrients for the growth and development of a forest stand. Different tree components contain different amounts of nutrients; and build up of soil organic matter. The amount of nutrients added through litter decomposition varies with forest types, species, stand attributes, and variation in seasonal environmental conditions. Nutrient return from organic matter is estimated by the physico-chemical properties of the litter. Moreover, the rate of decomposition and the nutrient releases are highly influenced by magnitude of litter produced, litter quality and nutrients release, as well as, by climatic conditions and existing microbial communities in the soil system. Ecological impact of carbon and nutrient dynamics in the litter layer is considerable in a forest ecosystem.

2021 ◽  
Author(s):  
Layla M. San-Emeterio ◽  
Ignacio Pérez-Ramos ◽  
Maria Teresa Domínguez-Núñez ◽  
Francisco Javier González-Vila ◽  
José Antonio González-Pérez

<p>Soil organic matter (SOM) is composed of multiple components from the living material, such as phenolic compounds, organic acids, lipids, peptides, polyesters, etc. A relevant part of these compounds forms part of supramolecular structures or mineral associations. Non-exchangeable hydrogen in SOM compounds is worth of study as an approach to estimate dynamic processes such as stabilization, mineralization, or biodegradation. The determination of H isotopes in SOMs faces analytical challenges related with e.g., the strength of the H bond, its exchangeability with ambient H from water or the instability of the isotopic analysis [1]. Nonetheless, along with the study of C isotopes, the study of H isotopes may certainly result in a complementary to give some light in this complex system, estimate the fate of organic compounds, and to better understand the link between hydrogen and carbon cycles in SOM [2].</p><p>In this communication, we describe and validate a methodology based on analytical pyrolysis for the direct measure of compound-specific H isotope composition (δ<sup>2</sup>H) in soil samples. The technique combines Py-GC with a high-temperature conversion reactor and a continuous flow isotope ratio mass spectrometer (IRMS) (Py-GC-HTC-IRMS).</p><p>Composite <em>dehesa</em> surface (0-10 cm) soil samples (Pozoblanco, Córdoba, Spain) were taken from four forced climatic treatment plots representing warming (W), drought (D), its combination (W+D), and control (D), installed in two different habitats: under evergreen oak canopy and in the open pasture. The samples were analysed in triplicate by conventional analytical pyrolysis (Py-GC/MS) and in parallel for δ<sup>2</sup>H Py-CSIA using the same chromatographic conditions and separation column type.</p><p>Up to 32 compounds were identified by Py-GC/MS, which H isotope composition corresponded presumably to non-exchangeable H, and with origin mainly from lignin (G- and S- units) and lipids. The H isotope composition showed an estimated average of -55 ‰ ± 7.09 for G-lignin units, -64 ‰ ± 8.64 S-lignin units and lighter -112 ‰ ± 4.32 for fatty acids (-109 ‰ ± 3.65) and the n-alkane series (C-19 to C-31). Significant differences are reportedly driven by the differences in habitat: more depleted δ<sup>2</sup>H values were found in SOM produced in the open pasture than under the tree canopy. In addition, a δ<sup>2</sup>H enrichment is observed for lignin-derived compounds in SOM under the W+D treatment.</p><p>The technique used and tested is expected to bring novelty results in relation to the processes affecting the isotopic composition of non-exchangeable hydrogen exerted by climatic treatments on diverse SOM specific compounds. Besides presenting the analytical challenges that are faced, we will discuss the effects of canopy and climatic treatments to tackle potential harsh climatic conditions as predicted, especially in Mediterranean areas. </p><p><strong>Acknowledgement:</strong> INTERCARBON project (CGL2016-78937-R), DECAFUN (CGL2015-70123-R). MICIU for funding FPI research grants (BES-2017-07968). Mrs Desiré Monis, Mrs Alba M. Carmona & Mr Eduardo Gutiérrez González are acknowledged for technical assistance.</p><p>[1] Paul, A. et al (2016). <em>Biogeosciences, 13</em>, 6587–6598.</p><p>[2] Seki, O. et al (2010). <em>Geochimica et Cosmochimica Acta, 74</em>(2), 599-613.</p>


Proceedings ◽  
2019 ◽  
Vol 30 (1) ◽  
pp. 26
Author(s):  
Marqués ◽  
Bienes ◽  
Ruiz-Colmenero

The wine captures grapes’ variety nature and vinification techniques, but other aspects of soil, climate and terrain are equally important for the terroir expression as a whole. Soil supplies moisture, nitrogen, and minerals. Particularly nitrogen obtained through mineralization of soil organic matter and water uptake are crucial for grape yield, berry sugar, anthocyanin and tannin concentration, hence grape quality and vineyard profitability. Different climatic conditions, which are predicted for the future, can significantly modify this relationship between vines and soils. New climatic conditions under global warming predict higher temperatures, erratic and extreme rainfall events, and drought spells. These circumstances are particularly worrisome for typical thin soils of the Mediterranean environment. This study reports the effect of permanent grass cover in vineyards to maintain or increase soil organic matter and soil moisture. The influence of natural and simulated rainfalls on soils was studied. A comparison between minimum tillage (MT) and permanent grass cover crop (GC) of the temperate grass Brachypodium distachyon was done. Water infiltration, water holding capacity, organic carbon sequestration and protection from extreme events, were considered in a sloping vineyard located in the south of Madrid, Spain. The MT is the most widely used cultivation method in the area. The tradition supports this management practice to capture and preserve water in soils. It creates small depressions that accumulate water and eventually improves water infiltration. This effect was acknowledged in summer after recent MT cultivation; however, it was only short-lived as surface roughness declined after rainfalls. Especially, intense rainfall events left the surface of bare soil sealed. Consequently, the effects depend on the season of the year. In autumn, a rainy season of the year, MT failed to enhance infiltration. On the contrary, B. distachyon acted as a physical barrier, produced more infiltration (22% increase) and fewer particles detachment, due to increased soil structure stability and soil organic matter (50% increase). The GC efficiently protected soil from high-intensity events (more than 2 mm min-1). Besides, soil moisture at 35 cm depth was enhanced with GC (9% more than tillage). On average, soil moisture in GC was not significantly different from MT. These effects of GC on soil conditions created local micro-environmental conditions that can be considered advantageous as a climate change adaptation strategy, because they improved water balance, maintained a sustainable level of soil organic matter, therefore organic nitrogen, all these factors crucial for improving wine quality.


2006 ◽  
Vol 52 (8) ◽  
pp. 701-716 ◽  
Author(s):  
T Osono

The ecology of endophytic and epiphytic phyllosphere fungi of forest trees is reviewed with special emphasis on the development of decomposer fungal communities and decomposition processes of leaf litter. A total of 41 genera of phyllosphere fungi have been reported to occur on leaf litter of tree species in 19 genera. The relative proportion of phyllosphere fungi in decomposer fungal communities ranges from 2% to 100%. Phyllosphere fungi generally disappear in the early stages of decomposition, although a few species persist until the late stages. Phyllosphere fungi have the ability to utilize various organic compounds as carbon sources, and the marked decomposing ability is associated with ligninolytic activity. The role of phyllosphere fungi in the decomposition of soluble components during the early stages is relatively small in spite of their frequent occurrence. Recently, the roles of phyllosphere fungi in the decomposition of structural components have been documented with reference to lignin and cellulose decomposition, nutrient dynamics, and accumulation and decomposition of soil organic matter. It is clear from this review that several of the common phyllosphere fungi of forest trees are primarily saprobic, being specifically adapted to colonize and utilize dead host tissue, and that some phyllosphere fungi with marked abilities to decompose litter components play important roles in decomposition of structural components, nutrient dynamics, and soil organic matter accumulation.Key words: carbon cycle, community, endophyte, epiphyte, succession.


2009 ◽  
Vol 33 (3) ◽  
pp. 571-579 ◽  
Author(s):  
Geraldo Erli Faria ◽  
Nairam Félix de Barros ◽  
Roberto Ferreira Novais ◽  
Ivo Ribeiro Silva

Knowledge on variations in vertical, horizontal and temporal characteristics of the soil chemical properties under eucalyptus stumps left in the soil is of fundamental importance for the management of subsequent crops. The objective of this work was to evaluate the effect of eucalyptus stumps (ES) left after cutting on the spatial variability of chemical characteristics in a dystrophic Yellow Argisol in the eastern coastal plain region of Brazil. For this purpose, ES left for 31 and 54 months were selected in two experimental areas with similar characteristics, to assess the decomposition effects of the stumps on soil chemical attributes. Soil samples were collected directly around these ES, and at distances of 30, 60, 90, 120 and 150 cm away from them, in the layers 0-10, 10-20 and 20-40 cm along the row of ES, which is in-between the rows of eucalyptus trees of a new plantation, grown at a spacing of 3 x 3 m. The soil was sampled in five replications in plots of 900 m² each and the samples analyzed for pH, available P and K (Mehlich-1), exchangeable Al, Ca and Mg, total organic carbon (TOC) and C content in humic substances (HS) and in the free light fraction. The pH values and P, K, Ca2+, Mg2+ and Al3+ contents varied between the soil layers with increasing distance from the 31 and 54-monthold stumps. The highest pH, P, K, Ca2+ and Mg2+ values and the lowest Al3+ content were found in the surface soil layer. The TOC of the various fractions of soil organic matter decreased with increasing distance from the 31 and 54-month-old ES in the 0-10 and 10-20 cm layers, indicating that the root (and stump) cycling and rhizodeposition contribute to maintain soil organic matter. The C contents of the free light fraction, of the HS and TOC fractions were higher in the topsoil layer under the ES left for 31 months due to the higher clay levels of this layer, than in those found under the 54-month-old stumps. However, highest C levels of the different fractions of soil organic matter in the topsoil layer reflect the deposition and maintenance of forest residues on the soil surface, mainly after forest harvest.


2021 ◽  
Author(s):  
Oleg Chertov ◽  
Yakov Kuzyakov ◽  
Irina Priputina ◽  
Pavel Frolov ◽  
Vladimir Shanin ◽  
...  

Abstract Purpose. This study is aimed to develop a model of priming effect (accelerated mineralisation of soil organic matter (SOM)) induced by root exudate input into nitrogen (N) limited rhizosphere soil as a typical case for most terrestrial ecosystems. This ecologically important process in the functioning of the “plant-soil” system was parameterized for temperate and boreal forests.Methods. A model of priming effect has been developed based on the concept of N mining to making up for the N scarcity in exudates by accelerating SOM mineralisation. Lacking N for microbial growth is mined from the SOM mineralisation considering C:N ratio of soil. The model has a built-in food web module, which calculates soil fauna feeding on microorganisms, the release of by-products of faunal metabolism and mineral N used for root uptake.Results. The model verification demonstrated the similar order of the priming effect as in the published experiments. Testing at the pedon level revealed a high sensitivity of the model to N content in root exudates. Testing of the model at the ecosystem level revealed that CO2 emission from the priming can reach 25–30% of CO2 emission from the whole Ah horizon of forest soil. The same intensities were simulated for the fauna-derived N released within the rhizosphere.Conclusion. The new model reflects important ecological consequences of the main target function of priming effects within the “plant – soil – microorganisms – fauna” system – the microbial acceleration of C and N cycling in the rhizosphere and detritusphere to mobilise mineral N for plants.


Author(s):  
Ye Zhu ◽  
Tianyun Shao ◽  
Yujie Zhou ◽  
Xiumei Gao ◽  
Xiaohua Long ◽  
...  

Periphyton plays an indispensable role in coastal saline-alkali land, but its function is poorly understood. Soil physical and chemical properties (pH value, salinity, soil organic matter), enzyme activity and microbial diversity (based on 16s rDNA, ITS and functional genes) were measured in periphyton formed on rice-growing coastal saline-alkali soil modified by a new type of soil conditioner. The results showed that the content of organic matter and catalase activity in periphyton were significantly higher than in the unplanted control soil. Soil pH and salinity were decreased in periphyton compared to the unplanted control soil. Based on the relative abundance, bacterial genera Desulfomicrobium, Rhodobacter, cyanobacterium_scsio_T−2, Gemmatimonas, and Salinarimonas as well as fungal genus Fusarium were more abundant in periphyton than the unplanted control soil. In terms of functional genes, the cbbM and cbbL sequencing showed higher abundance of Hydrogenophaga, Rhodovulum, Magnetospira, Leptothrix, and Thiohalorhabdus, whereas the nifH sequencing indicated higher abundance of Cyanobacteria in the periphyton compared to the unplanted soil. The relative abundance and community structure of soil microorganisms were improved by periphyton, thus reducing soil salinity and pH, increasing soil organic matter and enzyme activity. This indicated that the periphyton can improve the conditions and offer a suitable environment for plant growth in coastal saline-alkali soil.


Weed Science ◽  
1994 ◽  
Vol 42 (4) ◽  
pp. 629-634 ◽  
Author(s):  
Blake A. Brown ◽  
Robert M. Hayes ◽  
Donald D. Tyler ◽  
Thomas C. Mueller

Fluometuron adsorption and degradation were determined in soil collected at three depths from no-till + no cover, conventional-till + no cover, no-till + vetch cover, and conventional-till + vetch cover in continuous cotton. These combinations of tillage + cover crop + soil depth imparted a range of organic matter and pH to the soil. Soil organic matter and pH ranged from 0.9 to 2.5% and from 4.7 to 6.5, respectively. Fluometuron adsorption was affected by soil depth, tillage, and cover crop. In surface soils (0 to 4 cm), fluometuron adsorption was greater in no-till + vetch plots than in conventional-tilled + no cover plots. Soil adsorption of fluometuron was positively correlated with organic matter content and cation exchange capacity. Fluometuron degradation was not affected by adsorption, and degradation empirically fit a first-order model. Soil organic matter content had no apparent effect on fluometuron degradation rate. Fluometuron degradation was more rapid at soil pH > 6 than at pH ≤ 5, indicating a potential shift in microbial activity or population due to lower soil pH. Fluometuron half-life ranged from 49 to 90 d. These data indicate that tillage and cover crop may affect soil dissipation of fluometuron by altering soil physical and chemical properties that affect fluometuron degrading microorganisms or bioavailability.


2014 ◽  
Vol 3 (4) ◽  
pp. 63
Author(s):  
Luciano Pasqualoto Canellas ◽  
Riccardo Spaccini ◽  
Natalia De Oliveira Aguiar ◽  
Fabio Lopes Olivares

<p>In this work we have analyzed soil samples from Oxisols collected from two traditional communities, one formed by Guarany Indians at South of Brazil and other by African descendants on North of Rio de Janeiro State, Brazil. The content and fractional composition of humus was investigated and the isolated humic acids (HAs) were characterized by elemental composition, <sup>13</sup>C solid-state nuclear magnetic resonance, and high-performance size exclusion chromatography. The bioactivity of HAs was evaluated considering the effects on root growth of maize seedlings. Chemical properties from adjacent soils under native forest were used as control samples. The local field sites matching the traditional cropping requirements, were characterized by higher soil chemical fertility and soil organic matter hydrophobicity, as compared to the land plots considered as inadequate by rural peasants. The HAs from cropped soils revealed significant differences in respect to content, hydrophobicity, biostimulation and molecular dimension. Although all humic extracts promoted, both, root growth and the stimulation of lateral root emergence over control, the HAs from preferential local sites, revealed a larger bioactivity response on root stimulation even at lower concentration. The assessment of soil quality issued by local farmers, showed a valuable fitting with bio-chemical fertility indicators and SOM hydrophobicity.<strong></strong></p>


Sign in / Sign up

Export Citation Format

Share Document