QoS-Aware Green Communication Strategies for Optimal Utilization of Resources in 5G Networks

Author(s):  
Ganesh Prasad ◽  
Deepak Mishra ◽  
Ashraf Hossain

With increase in demand of data traffic with no compromise on the underlying quality of service (QoS), the coexistence problem arises due to high electricity consumption by the network architecture which results in a huge CO2 emission and thereby causing various health hazards. Efficient utilization of the resources can reduce the cost of power consumption which will increase the economy-characteristics of the network. The resource consumption can be reduced under an intelligent technology-neutral policies which optimizes the deployment of the network architecture along with their transmit power paving the way for fifth generation (5G) in green wireless communications. On another front, the ultra-dense deployment of the small cells can increase the frequency reuse factor as well as help in reducing the energy consumption. This chapter designs the energy efficient networks while satisfying the underlying QoS by joint optimization of available resources depending on the interoperability challenges in terrestrial, underwater acoustic, and free space optical (FSO) communications.

Author(s):  
Ganesh Prasad ◽  
Deepak Mishra ◽  
Ashraf Hossain

With increase in demand of data traffic with no compromise on the underlying quality of service (QoS), the coexistence problem arises due to high electricity consumption by the network architecture which results in a huge CO2 emission and thereby causing various health hazards. Efficient utilization of the resources can reduce the cost of power consumption which will increase the economy-characteristics of the network. The resource consumption can be reduced under an intelligent technology-neutral policies which optimizes the deployment of the network architecture along with their transmit power paving the way for fifth generation (5G) in green wireless communications. On another front, the ultra-dense deployment of the small cells can increase the frequency reuse factor as well as help in reducing the energy consumption. This chapter designs the energy efficient networks while satisfying the underlying QoS by joint optimization of available resources depending on the interoperability challenges in terrestrial, underwater acoustic, and free space optical (FSO) communications.


Author(s):  
Hamza Mohammed Ridha Al-Khafaji ◽  
Hasan Shakir Majdi

<p>This paper scrutinizes the influence of deployment scenarios on the energy performance of fifth-generation (5G) network at various backhaul wireless frequency bands. An innovative network architecture, the hybrid centric-distributed, is employed and its energy efficiency (EE) model is analyzed. The obtained results confirm that the EE of the 5G network increases with an increasing number of small cells and degrades with an increasing frequency of wireless backhaul and radius of small cells regardless of the network architectures. Moreover, the hybrid centric-distributed architecture augments the EE when compared with the distributed architecture.</p>


Author(s):  
Yi Xie

Heterogeneous network is supposed to be the dominant network architecture of the fifth generation (5G) cellular network, which means small cells are overlaid on the macrocell. The beamforming (BF) and cell expansion are two important approaches to serve users in small cells. Furthermore, non-orthogonal multiple access (NOMA) is a new type of multiple access multiplexing which improves system performance without taking up extra spectrum resources. Therefore, it becomes one promising technique in 5G. In this paper, NOMA is applied in a 5G heterogeneous network with biased small cells. The BF strategy and the multiuser scheduling method are proposed. The main user in NOMA is scheduled inside the original coverage of the small cell while the side user is chosen from the biased expansion area. The BF strategy that is executed depends on the channel of main user. The multiuser scheduling method is to maximize the rate performance. The proposed method can provide performance benefits. Simulation results show that the proposed methods can be well applied in heterogeneous networks. The achieved performance gain is approximately twice better than traditional OMA and has 10% improvement to the stochastic schedule method. In addition, the average rate of cell edge users is improved.


2018 ◽  
Vol 10 (10) ◽  
pp. 3626 ◽  
Author(s):  
Yousaf Zikria ◽  
Sung Kim ◽  
Muhammad Afzal ◽  
Haoxiang Wang ◽  
Mubashir Rehmani

The Fifth generation (5G) network is projected to support large amount of data traffic and massive number of wireless connections. Different data traffic has different Quality of Service (QoS) requirements. 5G mobile network aims to address the limitations of previous cellular standards (i.e., 2G/3G/4G) and be a prospective key enabler for future Internet of Things (IoT). 5G networks support a wide range of applications such as smart home, autonomous driving, drone operations, health and mission critical applications, Industrial IoT (IIoT), and entertainment and multimedia. Based on end users’ experience, several 5G services are categorized into immersive 5G services, intelligent 5G services, omnipresent 5G services, autonomous 5G services, and public 5G services. In this paper, we present a brief overview of 5G technical scenarios. We then provide a brief overview of accepted papers in our Special Issue on 5G mobile services and scenarios. Finally, we conclude this paper.


2021 ◽  
Vol 677 (3) ◽  
pp. 032087
Author(s):  
G S Kudryashev ◽  
A N Tretyakov ◽  
S V Batishchev ◽  
V A Bochkarev ◽  
V D Ochirov

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3584
Author(s):  
Milembolo Miantezila Junior ◽  
Bin Guo ◽  
Chenjie Zhang ◽  
Xuemei Bai

Cellular network operators are predicting an increase in space of more than 200 percent to carry the move and tremendous increase of total users in data traffic. The growing of investments in infrastructure such as a large number of small cells, particularly the technologies such as LTE-Advanced and 6G Technology, can assist in mitigating this challenge moderately. In this paper, we suggest a projection study in spectrum sharing of radar multi-input and multi-output, and mobile LTE multi-input multi-output communication systems near m base stations (BS). The radar multi-input multi-output and mobile LTE communication systems split different interference channels. The new approach based on radar projection signal detection has been proposed for free interference disturbance channel with radar multi-input multi-output and mobile LTE multi-input multi-output by using a new proposed interference cancellation algorithm. We chose the channel of interference with the best free channel, and the detected signal of radar was projected to null space. The goal is to remove all interferences from the radar multi-input multi-output and to cancel any disturbance sources from a chosen mobile Communication Base Station. The experimental results showed that the new approach performs very well and can optimize Spectrum Access.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Youngbin Na ◽  
Do-Kyeong Ko

AbstractStructured light with spatial degrees of freedom (DoF) is considered a potential solution to address the unprecedented demand for data traffic, but there is a limit to effectively improving the communication capacity by its integer quantization. We propose a data transmission system using fractional mode encoding and deep-learning decoding. Spatial modes of Bessel-Gaussian beams separated by fractional intervals are employed to represent 8-bit symbols. Data encoded by switching phase holograms is efficiently decoded by a deep-learning classifier that only requires the intensity profile of transmitted modes. Our results show that the trained model can simultaneously recognize two independent DoF without any mode sorter and precisely detect small differences between fractional modes. Moreover, the proposed scheme successfully achieves image transmission despite its densely packed mode space. This research will present a new approach to realizing higher data rates for advanced optical communication systems.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Bentahar Attaouia ◽  
Kandouci Malika ◽  
Ghouali Samir

AbstractThis work is focused to carry out the investigation of wavelength division multiplexing (WDM) approach on free space optical (FSO) transmission systems using Erbium Ytterbium Doped Waveguide Amplifier (EYDWA) integrated as post-or pre-amplifier for extending the reach to 30 Km for the cost-effective implementation of FSO system considering weather conditions. Furthermore, the performance of proposed FSO-wavelength division multiplexing (WDM) system is also evaluated on the effect of varying the FSO range and results are reported in terms of Q factor, BER, and eye diagrams. It has been found that, under clear rain the post-amplification was performed and was able to reach transmission distance over 27 Km, whereas, the FSO distance has been limited at 19.5 Km by using pre-amplification.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 169
Author(s):  
Sherief Hashima ◽  
Basem M. ElHalawany ◽  
Kohei Hatano ◽  
Kaishun Wu ◽  
Ehab Mahmoud Mohamed

Device-to-device (D2D) communication is a promising paradigm for the fifth generation (5G) and beyond 5G (B5G) networks. Although D2D communication provides several benefits, including limited interference, energy efficiency, reduced delay, and network overhead, it faces a lot of technical challenges such as network architecture, and neighbor discovery, etc. The complexity of configuring D2D links and managing their interference, especially when using millimeter-wave (mmWave), inspire researchers to leverage different machine-learning (ML) techniques to address these problems towards boosting the performance of D2D networks. In this paper, a comprehensive survey about recent research activities on D2D networks will be explored with putting more emphasis on utilizing mmWave and ML methods. After exploring existing D2D research directions accompanied with their existing conventional solutions, we will show how different ML techniques can be applied to enhance the D2D networks performance over using conventional ways. Then, still open research directions in ML applications on D2D networks will be investigated including their essential needs. A case study of applying multi-armed bandit (MAB) as an efficient online ML tool to enhance the performance of neighbor discovery and selection (NDS) in mmWave D2D networks will be presented. This case study will put emphasis on the high potency of using ML solutions over using the conventional non-ML based methods for highly improving the average throughput performance of mmWave NDS.


2021 ◽  
Vol 29 (2) ◽  
pp. 359-383
Author(s):  
Anatoly P. Dzyuba

Reducing the cost of electricity consumption by industrial enterprises is the most important area of increasing the operational efficiency of their activities. The article is devoted to the issue of reducing the cost of paying for the service component of the transport component of purchased electrical energy from industrial enterprises that have technological connection to the electrical networks of electricity producers. The article makes an empirical study of the features of the pricing of payment for the services of the transport component of purchased electrical energy for industrial enterprises connected to the electric grids of electricity producers with the identification of factors influencing the overestimation of the cost of paid electricity, and calculating such overestimations using the example of a typical schedule of electricity consumption of a machinebuilding enterprise for various regions Russia. On the basis of the developed author's indicators (tariff coefficient for electricity transportation by the level of GNP, index of tariff coefficient for electricity transportation, weighted average price for electricity transportation, index of weighted average price for electricity transportation, integral index of efficiency of GNP tariffs) study of the effectiveness of the application of tariffs for the transport of electricity for industrial enterprises connected to the electric networks of electricity producers. Based on the calculated indicators, the article groups the regions into three main groups, with the development of recommendations for managing the cost of purchasing electricity by the component of the cost of the transport component of purchased electricity in each group. As the most optimal option for reducing the cost of electricity transportation, the author proposes the introduction of demand management for electricity consumption, which will reduce the costs of industrial enterprises that pay for the transport component of purchased electricity at unfavorable tariff configurations.


Sign in / Sign up

Export Citation Format

Share Document