CNT-Based Nano Medicine From Synthesis to Therapeutic Application

2022 ◽  
pp. 175-211
Author(s):  
Shabana Yasmeen Ansari ◽  
Shoaib Anwar Ansari ◽  
Farhan Alshammari ◽  
Sirajudheen Anwar

Carbon nanotubes (CNTs) are allotropes of carbon consisting of cylindrical tubes, made up of graphite with a diameter of several nm to a length of several mm. They had extraordinary structural, mechanical, and electronic properties due to their small size and mass, high mechanical resilience, and high electrical and thermal conductivity. Their large surface area made them applicable in pharmacy and medicine and adsorb or conjugate a broad variety of medical and diagnostic agents (drugs, genes, vaccines, antibodies, biosensors, etc.). They are often used to deliver drugs directly into the cells without going through the metabolic process of body. In addition to drug delivery and gene therapy, CNTs are also used for tissue regeneration, diagnostic biosensors, chiral drug enantiomer separation, drug extraction, and drug or pollutant analysis. CNTs have recently been discovered as effective antioxidants. The ADME and toxicity of different types of CNTs have also been documented here, as well as the prospects, advantages, and challenges of this promising bio-nano technology.

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Hua He ◽  
Lien Ai Pham-Huy ◽  
Pierre Dramou ◽  
Deli Xiao ◽  
Pengli Zuo ◽  
...  

Carbon nanotubes (CNTs) are allotropes of carbon, made of graphite and constructed in cylindrical tubes with nanometer in diameter and several millimeters in length. Their impressive structural, mechanical, and electronic properties are due to their small size and mass, their strong mechanical potency, and their high electrical and thermal conductivity. CNTs have been successfully applied in pharmacy and medicine due to their high surface area that is capable of adsorbing or conjugating with a wide variety of therapeutic and diagnostic agents (drugs, genes, vaccines, antibodies, biosensors, etc.). They have been first proven to be an excellent vehicle for drug delivery directly into cells without metabolism by the body. Then other applications of CNTs have been extensively performed not only for drug and gene therapies but also for tissue regeneration, biosensor diagnosis, enantiomer separation of chiral drugs, extraction and analysis of drugs and pollutants. Moreover, CNTs have been recently revealed as a promising antioxidant. This minireview focuses the applications of CNTs in all fields of pharmacy and medicine from therapeutics to analysis and diagnosis as cited above. It also examines the pharmacokinetics, metabolism and toxicity of different forms of CNTs and discusses the perspectives, the advantages and the obstacles of this promising bionanotechnology in the future.


2018 ◽  
Vol 25 (2) ◽  
pp. 383-388 ◽  
Author(s):  
Atheer M. Almasri

AbstractThe thermal conductivity of particulate composite models is well documented in the literature. This paper attempts to fit the experimental data for the thermal conductivity of polymer nanocomposites to a three-phase Krenchel model. The use of this model is applicable for structures that consist of a polymer matrix, a nanofiller, and an interfacial layer around the nanoparticles. The effect of Kapitza’s thermal resistance is implemented in the model along with the assumption that the nanofillers are cylindrical and well connected to each other; however, no parameters related to any type of dispersants or the dispersion techniques are stated in the model. The results of the three-phase Krenchel model were validated using the experimental data of thermal conductivity of multiwall carbon nanotubes embedded in polypropylene matrix nanocomposites. It was found that the model was in good agreement with the experimental thermal conductivity data. Moreover, the results from the model showed that the filler geometrical packing factor was 0.75; consequently, the carbon nanotubes formed bundles of several cylindrical tubes. The length of the interface between the nanotubes and the polymer matrix was around 1 Å. Finally, the thermal conductivity of the composite bundle cylinder was 21.63 W/(m K).


2017 ◽  
Vol 59 (02) ◽  
pp. 10-13
Author(s):  
Trong Tam Nguyen ◽  
◽  
Hung Thang Bui ◽  
Ngoc Minh Phan ◽  
◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Natsumi Komatsu ◽  
Yota Ichinose ◽  
Oliver S. Dewey ◽  
Lauren W. Taylor ◽  
Mitchell A. Trafford ◽  
...  

AbstractLow-dimensional materials have recently attracted much interest as thermoelectric materials because of their charge carrier confinement leading to thermoelectric performance enhancement. Carbon nanotubes are promising candidates because of their one-dimensionality in addition to their unique advantages such as flexibility and light weight. However, preserving the large power factor of individual carbon nanotubes in macroscopic assemblies has been challenging, primarily due to poor sample morphology and a lack of proper Fermi energy tuning. Here, we report an ultrahigh value of power factor (14 ± 5 mW m−1 K−2) for macroscopic weavable fibers of aligned carbon nanotubes with ultrahigh electrical and thermal conductivity. The observed giant power factor originates from the ultrahigh electrical conductivity achieved through excellent sample morphology, combined with an enhanced Seebeck coefficient through Fermi energy tuning. We fabricate a textile thermoelectric generator based on these carbon nanotube fibers, which demonstrates high thermoelectric performance, weavability, and scalability. The giant power factor we observe make these fibers strong candidates for the emerging field of thermoelectric active cooling, which requires a large thermoelectric power factor and a large thermal conductivity at the same time.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3154
Author(s):  
Kony Chatterjee ◽  
Tushar K. Ghosh

Since prehistoric times, textiles have served an important role–providing necessary protection and comfort. Recently, the rise of electronic textiles (e-textiles) as part of the larger efforts to develop smart textiles, has paved the way for enhancing textile functionalities including sensing, energy harvesting, and active heating and cooling. Recent attention has focused on the integration of thermoelectric (TE) functionalities into textiles—making fabrics capable of either converting body heating into electricity (Seebeck effect) or conversely using electricity to provide next-to-skin heating/cooling (Peltier effect). Various TE materials have been explored, classified broadly into (i) inorganic, (ii) organic, and (iii) hybrid organic-inorganic. TE figure-of-merit (ZT) is commonly used to correlate Seebeck coefficient, electrical and thermal conductivity. For textiles, it is important to think of appropriate materials not just in terms of ZT, but also whether they are flexible, conformable, and easily processable. Commercial TEs usually compromise rigid, sometimes toxic, inorganic materials such as bismuth and lead. For textiles, organic and hybrid TE materials are more appropriate. Carbon-based TE materials have been especially attractive since graphene and carbon nanotubes have excellent transport properties with easy modifications to create TE materials with high ZT and textile compatibility. This review focuses on flexible TE materials and their integration into textiles.


Carbon ◽  
2021 ◽  
Vol 184 ◽  
pp. 641-650
Author(s):  
Myriam Barrejón ◽  
Silvia Marchesan ◽  
Nuria Alegret ◽  
Maurizio Prato

Sign in / Sign up

Export Citation Format

Share Document