Experimental Evaluation on Tribological Performance of the Wheel/Workpiece Interface in NMQL Grinding With Different Concentrations of Al2o3 Nanofluids

Author(s):  
Changhe Li ◽  
Hafiz Muhammad Ali

As a result of the growing need for environmental protection and the increasing number of health problems faced by workers, traditional lubricants are gradually being replaced. Nanofluids, which contain nanoparticles in the proper base fluid, can serve as a low carbon, “green” lubricant. Nanofluids show improved heat transfer capability and lubricating properties. Therefore, increasing lubricating effects is an effective way to improve machining performance. The tribological properties of grinding wheel/workpiece interface with different concentration of Al2O3 nanofluid micro-lubrication grinding were studied. The influences of the force ratio, viscosity and contact angle of Al2O3 nanofluids with different concentrations on the grinding force and the surface quality of workpieces are discussed. The best concentration of Al2O3 nanofluid with good lubrication performance in grinding zone was obtained.

As a result of the growing need for environmental protection and the increasing number of health problems faced by workers, traditional lubricants are gradually being replaced. Nanofluids, which contain nanoparticles in the proper base fluid, can serve as a low carbon, “green” lubricant. Nanofluids show improved heat transfer capability and lubricating properties. Therefore, increasing lubricating effects is an effective way to improve machining performance. The tribological properties of grinding wheel/workpiece interface with different concentration of Al2O3 nanofluid micro-lubrication grinding were studied. The influences of the force ratio, viscosity and contact angle of Al2O3 nanofluids with different concentrations on the grinding force and the surface quality of workpieces are discussed. The best concentration of Al2O3 nanofluid with good lubrication performance in grinding zone was obtained.


This chapter is proposed to solve the insufficient MQL cooling and heat transfer capability based on the heat transfer enhancement theory of solid. Adding nanoparticles into the base fluid can significantly elevate heat conductivity coefficient of the base fluid and enhance convective heat transfer capability of the grinding area. Researchers have carried out numerous experimental studies on nanofluids with different concentrations. However, the scientific nature of MQL cooling has not been explained. Degradable, nontoxic, low-carbon, and environmentally friendly green grinding fluid, palm oil taken as the base fluid, grinding force, grinding temperature and proportionality coefficient of energy transferred to workpiece of nanofluids with different volume fractions, are investigated in this chapter. Based on the analysis of the influence of physical characteristics of nanofluids on experimental results, cooling and heat transfer mechanism of NMQL grinding is studied. The experimental study can provide a certain technical guidance for industrial machining.


2020 ◽  
Vol 19 (02) ◽  
pp. 235-248
Author(s):  
Hai Zhou ◽  
Jiahui Wei ◽  
Fang Song ◽  
Yongkang Li ◽  
Chuanjin Huang ◽  
...  

The (010) and (100) planes of a [Formula: see text]-Ga2O3 crystal were subjected to precision grinding tests with a resin bond diamond grinding wheel on a precision surface grinding machine. The grinding characteristics and surface grinding quality of the planes of the [Formula: see text]-Ga2O3 crystal were analyzed on the basis of grinding force, grinding force ratio, specific energy, and surface morphology. The (010) plane shows a larger grinding force and specific energy but a smaller grinding force ratio compared with the (100) plane. Under experimental conditions, the normal and tangential grinding forces of the (010) plane are 1.4–2.2 and 2.6–7.8 times that of the (100) plane, respectively. The specific energy of the (010) plane is 2.8–6.1 times that of the (100) plane, and the grinding force ratio of the (100) plane is 1.4–3.7 times that of the (010) plane. Under the same grinding conditions, the material removal methods for the two planes are evidently different. The (010) plane is mainly removed by brittle fracture and accompanied by a minimal broken area, whereas the (100) plane is mainly removed by cleavage layering and exhibits numerous block cleavage. The (100) plane is the strong cleavage surface, and the (100) plane demonstrates a higher surface roughness than the (010) plane under the same grinding conditions.


Author(s):  
Changhe Li ◽  
Hafiz Muhammad Ali

This chapter is proposed to solve the insufficient MQL cooling and heat transfer capability based on the heat transfer enhancement theory of solid. Adding nanoparticles into the base fluid can significantly elevate heat conductivity coefficient of the base fluid and enhance convective heat transfer capability of the grinding area. Researchers have carried out numerous experimental studies on nanofluids with different concentrations. However, the scientific nature of MQL cooling has not been explained. Degradable, nontoxic, low-carbon, and environmentally friendly green grinding fluid, palm oil taken as the base fluid, grinding force, grinding temperature and proportionality coefficient of energy transferred to workpiece of nanofluids with different volume fractions, are investigated in this chapter. Based on the analysis of the influence of physical characteristics of nanofluids on experimental results, cooling and heat transfer mechanism of NMQL grinding is studied. The experimental study can provide a certain technical guidance for industrial machining.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3295
Author(s):  
Maciej Dzikuć ◽  
Rafał Miśko ◽  
Szymon Szufa

The development of urban transport in recent years has become one of the most important issues related to improving the quality of life in Polish cities. Excessive pollution in the form of greenhouse gases and other harmful substances from buses affects people’s health as does the excessive noise. This article analysed the measures being taken to reduce emissions, and the results showed that it is possible to reduce CO2 emissions by more than 28 thousand megagrams (Mg) per annum. Policymakers in Poland should consider limiting electricity generation through coal combustion and recognize, at least temporarily, CNG/LNG-powered buses as low-carbon rolling stock and co-finance their purchase and the necessary infrastructure.


2007 ◽  
Vol 24-25 ◽  
pp. 229-232
Author(s):  
S.L. Ma ◽  
Wei Li ◽  
Cong Rong Zhu ◽  
J. Zhang ◽  
H.C. Ye

Tungsten carbide which is a hard and brittle material was ground by cast-iron bonded diamond wheel with ELID (Electrolytic In-Process Dressing) technique, for the purpose of getting high efficiency, super-precision machining. Three kinds of cast-iron bonded diamond wheels with different grain size were adopted to get different grinding efficiency and surface quality of workpieces. The grinding properties of cast-iron bonded grinding wheels with different grain size and the ground surface quality of tungsten carbide are discussed in this paper. The experiment results indicate that, under the same feeding amount, the grinding efficiency of the wheel with bigger grain size is higher, and it could make the dimension accuracy of the workpiece controllable, but the wheel with smaller grain size could get better ground surface quality. The two grinding phases are decided by the ratio between the size of abrasive grain and the thickness of the oxide layer on the grinding wheel.


1999 ◽  
Vol 122 (1) ◽  
pp. 141-145 ◽  
Author(s):  
M. Chiarelli ◽  
A. Lanciotti ◽  
M. Sacchi

The paper describes the results of a research programme, carried out at the Department of Aerospace Engineering of the University of Pisa, for the assessment of the influence of plasma cutting on the physical and mechanical properties of Fe510 D1, a low carbon steel widely used in carpentry. The activity started by observing that several industries rework plasma cut edges, particularly in the case of fatigue structures, in spite of the good quality of the plasma cut edges in a fully automatic process. Obviously, reworking is very expensive and time-consuming. Comparative fatigue tests demonstrated that the fatigue resistance of plasma cut specimens in Fe510 steel was fully comparable to that of milled specimens, as the consequence of the beneficial residual stresses which formed in the plasma cut edges. [S0094-4289(00)02201-5]


2021 ◽  
Vol 410 ◽  
pp. 262-268
Author(s):  
Vyacheslav M. Shumyacher ◽  
Sergey A. Kryukov ◽  
Natal'ya V. Baidakova

One of the critical physical and mechanical properties of metals and alloys is the suitability for abrasive machining. Machining by abrasive tools is the final operation that sets the desired macro-geometry parameters of processed blanks and microgeometry parameters of processed surfaces such as roughness and length of a bearing surface. Abrasive machining determines the most important physical and mechanical parameters of a blank surface layer, i.e. stresses, phase composition, structure. Machinability by abrasive tools depends on the machining performance affected both by the blank material properties and various processing factors. In our previous studies, we proved that during abrasive machining the metal microvolume affected by abrasive grains accumulates energy. This energy is used for metal dispersion and is converted into heat. According to the theoretical studies described herein, one may note the absence of a reliable and scientifically valid method as well as measuring instruments to determine the machinability of metals and alloys by abrasive tools. For this reason, we suggested a method simulating the effect the multiple abrasive grains produce in a grinding wheel, and enabling us to identify machinability of metals and alloys, select the most efficient abrasive materials for machining of the same, and form the basis for development of effective grinding operations.


2016 ◽  
Vol 106 (01-02) ◽  
pp. 44-50
Author(s):  
T. Lierse ◽  
B. Karpuschewski ◽  
T. R. Kaul

Dieser Beitrag zeigt, dass die durch die Abrichtparameter erzeugte Schleifscheibentopographie nicht nur die Oberflächengüte des Werkstücks, sondern auch dessen Eigenspannungszustand in der Werkstückrandzone in weiten Grenzen verändert. Die Untersuchungen zum Abrichten von Korundschleifscheiben mit einer CVD-Diamantformrolle stellen den Zusammenhang zwischen dem Abrichten unterschiedlicher Schleifscheiben zur Bauteilqualität in Form der Oberflächenrautiefe und randzonennahen Eigenspannungen her.   The quality of the workpiece rim is changed by every grinding process. The grinding wheel topography created by the dressing process has not only influence on the workpiece roughness but also on the surface integrity. The pointed research using aluminum oxide abrasive wheels dressed by CVD diamond dressing discs shows a correlation between the dressing parameters, the workpiece roughness and the surface integrity.


2018 ◽  
Vol 198 ◽  
pp. 02004
Author(s):  
Junping Zhang ◽  
Weidong Wang ◽  
Songhua Li ◽  
Han Tao

The impacts of different linear speed of grinding wheel, grinding depth and workpiece feed speed with or without grinding fluid on grinding force were studied by plane grinding machining of zirconia ceramics. The impacts of different machining environment and grinding parameter on normal and tangential grinding forceswere studied by testing the grinding force during grinding with a force measuring device. The studies showed that the normal and tangential grinding forces decrease with the increase of the linear speed of grinding wheel and increase with the improvement of grinding depth and workpiece feed speed. The grinding depth has the greatest impacts on the normal and tangential grinding forces in dry grinding environment; while in wet grinding environment, the grinding depth exerts the greatest impacts on the normal grinding force and the linear speed of grinding wheel imposes the greatest impacts on the tangential grinding force. In addition, it was found that the normal grinding force in dry grinding is minor than that in wet grinding, that the tangential grinding force in dry grinding is greater than that in wet grinding, and that the grinding force ratio in dry grinding is lower than that in wet grinding.


Sign in / Sign up

Export Citation Format

Share Document