Performance and Isotherm Studies in Phenol Adsorption From Wastewater Using Low Cost Biomass Derived From Coconut Shells

Author(s):  
Mohan Rao T. ◽  
K. Rajesh Kumar ◽  
G. Shyamala ◽  
R. Gobinath

With the growth of urbanization and industrialization, water bodies are getting polluted. Among various pollutants, phenol-based pollutants are common water pollutions which originate from wastewater discharged from processing manufacturing industries like petrochemical refineries, ceramic plants, textile processing, leather processing, synthetic rubbers, etc. These pollutants are toxic and have long-term ill effects on both humans and aquatic animals. Adsorption is well proven technique which is widely used for removal of pollutions from aqueous environments. But this process, is hindered due to the cost of adsorbents especially for large scale continuous processes. In this regard, adsorbents derived from waste biomass can be a great asset to reduce the cost of wastewater treatment. To meet this objective, coconut shells are chosen as biomass which is abundantly available from south east Asia. This biomass is converted into activated carbon and hence used to remove phenol from wastewater. Batch adsorption experiments were performed with different initial concentration, carbon dosage, pH and contact time. At a lower concentration of 50 mg/L of initial feed (phenol) concentration resulted in around 90% phenol removal and henceforth optimum results in phenol removal obtained in only 64%. Experimental results are in good agreement with Langmuir adsorption isotherm model and have shown a better fitting to the experimental data. These studies confirm that the coconut shell-based activated carbon could be used to effectively adsorb phenol from aqueous solutions.

2020 ◽  
Vol 81 (10) ◽  
pp. 2109-2126 ◽  
Author(s):  
Seyed Omid Ahmadinejad ◽  
Seyed Taghi Omid Naeeni ◽  
Zahra Akbari ◽  
Sara Nazif

Abstract One of the major pollutants in leachate is phenol. Due to safety and environmental problems, removal of phenol from leachate is essential. Most of the adsorption studies have been conducted in batch systems. Practically, large-scale adsorption is carried out in continuous systems. In this research, the adsorption method has been used for phenol removal from leachate by using walnut shell activated carbon (WSA) and coconut shell activated carbon (CSA) as adsorbents in a fixed-bed column. The effect of adsorbent bed depth, influent phenol concentration and type of adsorbent on adsorption was explored. By increasing the depth of the adsorbent bed in the column, phenol removal efficiency and saturation time increase significantly. Also, by increasing the influent concentration, saturation time of the column decreases. To predict the column performance and describe the breakthrough curve, three kinetic models of Yon-Nelson, Adams-Bohart and Thomas were applied. The results of the experiments indicate that there is a good match between the results of the experiment and the predicted results of the models.


2010 ◽  
Vol 75 (6) ◽  
pp. 845-853 ◽  
Author(s):  
Hassan Mousavi ◽  
Abdorrahman Hosseinifar ◽  
Vahdat Jahed

The influence of pH, adsorbent dose, initial Cu(II) concentration and contact time on the removal of Cu(II) from aqueous solution by the batch adsorption technique using waste tire rubber ash as a low-cost adsorbent was investigated. The adsorption equilibrium was achieved after 2 h at pH 4-6, the optimum for the adsorption of Cu(II) ions. A dose of 1.5 g/L of adsorbent was sufficient for the optimum removal of copper ions. The experimental data were analyzed by the Langmuir and Freundlich isotherms and the corresponding sorption constants were evaluated. The adsorption kinetics data were fitted by a first-order equation. The cost of removal is expected to be quite low, as the adsorbent is cheap and easily available in large quantities. The present study showed that waste tire rubber ash was capable of removing copper ions from industrial wastewater samples.


2006 ◽  
Vol 2006 ◽  
pp. 1-12
Author(s):  
A. Korobeinikov ◽  
P. Read ◽  
A. Parshotam ◽  
J. Lermit

It has been suggested that the large scale use of biofuel, that is, fuel derived from biological materials, especially in combination with reforestation of large areas, can lead to a low-cost reduction of atmospheric carbon dioxide levels. In this paper, a model of three markets: fuel, wood products, and land are considered with the aim of evaluating the impact of large scale biofuel production and forestry on these markets, and to estimate the cost of a policy aimed at the reduction of carbon dioxide in the atmosphere. It is shown that the costs are lower than had been previously expected.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 574
Author(s):  
Emilius Sudirjo ◽  
Paola Y. Constantino Diaz ◽  
Matteo Cociancich ◽  
Rens Lisman ◽  
Christian Snik ◽  
...  

Large-scale implementation of (plant) microbial fuel cells is greatly limited by high electrode costs. In this work, the potential of exploiting electrochemically active self-assembled biofilms in fabricating three-dimensional bioelectrodes for (plant) microbial fuel cells with minimum use of electrode materials was studied. Three-dimensional robust bioanodes were successfully developed with inexpensive polyurethane foams (PU) and activated carbon (AC). The PU/AC electrode bases were fabricated via a water-based sorption of AC particles on the surface of the PU cubes. The electrical current was enhanced by growth of bacteria on the PU/AC bioanode while sole current collectors produced minor current. Growth and electrochemical activity of the biofilm were shown with SEM imaging and DNA sequencing of the microbial community. The electric conductivity of the PU/AC electrode enhanced over time during bioanode development. The maximum current and power density of an acetate fed MFC reached 3 mA·m−2 projected surface area of anode compartment and 22 mW·m−3 anode compartment. The field test of the Plant-MFC reached a maximum performance of 0.9 mW·m−2 plant growth area (PGA) at a current density of 5.6 mA·m−2 PGA. A paddy field test showed that the PU/AC electrode was suitable as an anode material in combination with a graphite felt cathode. Finally, this study offers insights on the role of electrochemically active biofilms as natural enhancers of the conductivity of electrodes and as transformers of inert low-cost electrode materials into living electron acceptors.


2013 ◽  
Vol 47 (4) ◽  
pp. 347-364 ◽  
Author(s):  
MS Islam ◽  
MA Rouf

A review of the production of activated carbons from waste biomass has been presented. The effects of various process parameters on the pyrolysis stage have been reviewed. Influences of activating conditions, physical and chemical, on the active carbon properties have been discussed. Under certain process conditions several active carbons with BET surface areas, ranging between 250 and 2410 m2/g and pore volumes of 0.022 and 91.4 cm3/g, have been produced. A comparison in characteristics and uses of activated carbons from waste biomass with those of commercial carbons has been made. Waste biomass being highly efficient, low cost and renewable sources of activated carbon production. Bangladesh J. Sci. Ind. Res. 47(4), 347-364, 2012 DOI: http://dx.doi.org/10.3329/bjsir.v47i4.14064


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2498 ◽  
Author(s):  
Marwa Elkady ◽  
Hassan Shokry ◽  
Hesham Hamad

Nano-activated carbon (NAC) prepared from El-Maghara mine coal were modified with nitric acid solution. Their physico-chemical properties were investigated in terms of methylene blue (MB) adsorption, FTIR, and metal adsorption. Upon oxidation of the ACS with nitric acid, surface oxide groups were observed in the FTIR spectra by absorption peaks at 1750–1250 cm−1. The optimum processes parameters include HNO3/AC ratio (wt./wt.) of 20, oxidation time of 2 h, and the concentration of HNO3 of 10% reaching the maximum adsorption capacity of MB dye. Also, the prepared NAC was characterized by SEM, EDX, TEM, Raman Spectroscopy, and BET analyses. The batch adsorption of MB dye from solution was used for monitoring the behavior of the most proper produced NAC. Equilibrium isotherms of MB dye adsorption on NAC materials were acquired and the results discussed in relation to their surface chemistry. Langmuir model recorded the best interpretation of the dye adsorption data. Also, NAC was evaluated for simultaneous adsorption of six different metal ions (Fe2+, Ni2+, Mn2+, Pb2+, Cu2+, and Zn2+) that represented contaminates in petrochemical industrial wastewater. The results indicated that the extracted NAC from El-Maghara mine coal is considered as an efficient low-cost adsorbent material for remediation in both basic dyes and metal ions from the polluted solutions.


2002 ◽  
Vol 17 (10) ◽  
pp. 2484-2488 ◽  
Author(s):  
Travis L. Brown ◽  
Srinivasan Swaminathan ◽  
Srinivasan Chandrasekar ◽  
W. Dale Compton ◽  
Alexander H. King ◽  
...  

In spite of their interesting properties, nanostructured materials have found limited uses because of the cost of preparation and the limited range of materials that can be synthesized. It has been shown that most of these limitations can be overcome by subjecting a material to large-scale deformation, as occurs during common machining operations. The chips produced during lathe machining of a variety of pure metals, steels, and other alloys are shown to be nanostructured with grain (crystal) sizes between 100 and 800 nm. The hardness of the chips is found to be significantly greater than that of the bulk material.


Author(s):  
P. K. KAPUR ◽  
ANU. G. AGGARWAL ◽  
KANICA KAPOOR ◽  
GURJEET KAUR

The demand for complex and large-scale software systems is increasing rapidly. Therefore, the development of high-quality, reliable and low cost computer software has become critical issue in the enormous worldwide computer technology market. For developing these large and complex software small and independent modules are integrated which are tested independently during module testing phase of software development. In the process, testing resources such as time, testing personnel etc. are used. These resources are not infinitely large. Consequently, it is an important matter for the project manager to allocate these limited resources among the modules optimally during the testing process. Another major concern in software development is the cost. It is in fact, profit to the management if the cost of the software is less while meeting the costumer requirements. In this paper, we investigate an optimal resource allocation problem of minimizing the cost of software testing under limited amount of available resources, given a reliability constraint. To solve the optimization problem we present genetic algorithm which stands up as a powerful tool for solving search and optimization problems. The key objective of using genetic algorithm in the field of software reliability is its capability to give optimal results through learning from historical data. One numerical example has been discussed to illustrate the applicability of the approach.


2019 ◽  
Vol 9 (5) ◽  
pp. 51-55
Author(s):  
Vijayalakshmi G ◽  
B. Ramkumar

The present work reported the adsorption of Cr (VI) from aqueous solutions on activated carbon prepared from teak wood waste. Biomass from teak wood were taken out and pulverized in a micro-pulverizing mill. The powder thus obtained was activated with 40% H3PO4 and carbonized at 600 °C for 1 hour in an inert atmosphere. Physico-chemical characteristics such as  functional groups and surface morphology of the activated carbon were analyzed using FTIR spectroscopy and SEM analysis respectively. Batch adsorption experiments were performed to investigate the effects of Cr (VI) concentration, carbon dose, pH and time. The maximum adsorption capacity of Cr(VI) was found to be 1.5 g/L at pH 3 and temperature 30±1 °C. The Freundlich adsorption isotherm best represented the equilibrium data and a pseudo-second order relation represented the adsorption kinetics.


Author(s):  
C O Ataguba ◽  
I Brink

The design and construction of low-cost laboratory-scale filter columns using locally available Nigerian filter materials - granular activated carbon (GAC), gravel (GR) and rice husk (RH) - were carried out and reported. The filter materials and columns were designed, constructed and used for the treatment of stormwater runoff from selected automobile workshops in Nigeria over a period of three rainy months. The combined granular activated carbon and rice husk filter systems performed best with pollutant removal efficiency of 58%. It was shown that the materials, considered as waste, could be recycled and used as filter materials in the treatment of stormwater from automobile workshops. This low-cost technology for stormwater runoff treatment, especially for automobile workshops at large scale and in-situ, can be further explored.


Sign in / Sign up

Export Citation Format

Share Document