A Numerical Approach for Simulation of Rock Fracturing in Engineering Blasting

2010 ◽  
Vol 1 (2) ◽  
pp. 38-58
Author(s):  
Mani Ram Saharan ◽  
Hani S. Mitri

An approach for simulation of rock fracturing as a result of engineering blasting is presented in this paper. The approach uses element elimination technique within the framework of finite element method to capture the physics of engineering blasting. The approach does not require pre-placement of fracture paths which is the severe drawback of the other existing methodologies and approaches. Results of plane stress modelling for isotropic brittle rock behaviour are presented in this paper and these results are in good agreement with the existing knowledge base. The authors also review the existing approaches of numerical modelling to compare the efficacy of the element elimination technique. It is anticipated that the further developments with this approach can prove to be good experimental tool to improve engineering blasting operations.

Author(s):  
Mani Ram Saharan ◽  
Hani Mitri

An approach for simulation of rock fracturing as a result of engineering blasting is presented in this paper. The approach uses element elimination technique within the framework of finite element method to capture the physics of engineering blasting. The approach does not require pre-placement of fracture paths which is the severe drawback of the other existing methodologies and approaches. Results of plane stress modelling for isotropic brittle rock behaviour are presented in this paper and these results are in good agreement with the existing knowledge base. The authors also review the existing approaches of numerical modelling to compare the efficacy of the element elimination technique. It is anticipated that the further developments with this approach can prove to be good experimental tool to improve engineering blasting operations.


1992 ◽  
Vol 20 (4) ◽  
pp. 230-253 ◽  
Author(s):  
T. Akasaka ◽  
K. Kabe ◽  
M. Koishi ◽  
M. Kuwashima

Abstract The deformation behavior of a tire in contact with the roadway is complicated, in particular, under the traction and braking conditions. A tread rubber block in contact with the road undergoes compression and shearing forces. These forces may cause the loss of contact at the edges of the block. Theoretical analysis based on the energy method is presented on the contact deformation of a tread rubber block subjected to compressive and shearing forces. Experimental work and numerical calculation by means of the finite element method are conducted to verify the predicted results. Good agreement is obtained among these analytical, numerical, and experimental results.


2013 ◽  
Vol 281 ◽  
pp. 112-115 ◽  
Author(s):  
Dan Jin ◽  
Zhao Hui Li

Wedge-shaped transducers have been widely used in industry as probes for ultrasonic flowmeters or for ultrasonic flaw detectors. But by now, few studies have focused on the influence to the performance of the wedge-shaped transducers brought by their limited size. In this paper, the effect of the shape and size of wedge-shaped substrates on the whole transducer system is discussed and the shape and size of a transducer (0.5MHz) is optimized to eliminate the influence of the boundary effect by using a 2-D Finite Element (FE) model. Lastly, wedge-shaped transducers have been manufactured for experiment which shows a good agreement with the simulation.


2021 ◽  
pp. 1-37
Author(s):  
Guoyong Mao ◽  
Wei Hong ◽  
Martin Kaltenbrunner ◽  
Shaoxing Qu

Abstract Dielectric elastomer (DE) actuators are deformable capacitors capable of a muscle-like actuation when charged. When subjected to voltage, DE membranes coated with compliant electrodes may form wrinkles due to the Maxwell stress. Here, we develop a numerical approach based on the finite element method (FEM) to predict the morphology of wrinkled DE membranes mounted on a rigid frame. The approach includes two steps, I) pre-buckling and II) post-buckling. In step I, the first buckling mode of the DE membrane is investigated by substituting the Maxwell stress with thermal stress in the built-in function of the FEM platform SIMULIA Abaqus. In step II, we use this first buckling mode as an artificial geometric imperfection to conduct the post-buckling analysis. For this purpose, we develop an equivalent model to simulate the mechanical behavior of DEs. Based on our approach, the thickness distribution and the thinnest site of the wrinkled DE membranes subjected to voltage are investigated. The simulations reveal that the crests/troughs of the wrinkles are the thinnest sites around the center of the membrane and corroborate these findings experimentally. Finally, we successfully predict the wrinkles of DE membranes mounted on an isosceles right triangle frame with various sizes of wrinkles generated simultaneously. These results shed light on the fundamental understanding of wrinkled dielectric elastomers but may also trigger new applications such as programmable wrinkles for optical devices or their prevention in DE actuators.


Author(s):  
Shan Jin ◽  
Shuai Yuan ◽  
Yong Bai

In practical application, pipelines will inevitably experience bending and compression during manufacture, transportation and offshore installation. The mechanical behavior of tubes under combined axial compression and bending loads is investigated using experiments and finite element method in this paper. Tubes with D/t ratios in the range of 40 and 97 are adopted in the experiments. Then, the ultimate loads and the local buckling modes of tubes are studied. The commercial software ABAQUS is used to build FE models to simulate the load-shortening responses of tubes under combined loads. The results acquired from the ABAQUS simulation are compared with the ones from verification bending experiment, which are in good agreement with each other. The models in this paper are feasible to analyze the mechanical properties of tubes under combined axial compression and bending loads. The related results may be of interest to the manufacture engineers.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4842
Author(s):  
Huanping Yang ◽  
Wei Zhuang ◽  
Wenbin Yan ◽  
Yaomian Wang

The nanoindentation loading response of elastoplastic materials was simulated by the finite element method (FEM). The influence of the Young’s modulus E, yield stress σy, strain hardening exponent n and Poisson’s ratio ν on the loading response was investigated. Based on an equivalent model, an equation with physical meaning was proposed to quantitatively describe the influence. The calculations agree well with the FEM simulations and experimental results in literature. Comparisons with the predictions using equations in the literature also show the reliability of the proposed equation. The investigations show that the loading curvature C increases with increasing E, σy, n and ν. The increase rates of C with E, σy, n and ν are different for their different influences on the flow stress after yielding. It is also found that the influence of one of the four mechanical parameters on C can be affected by the other mechanical parameters.


Author(s):  
Bartosz Łuczak ◽  
Bartosz Firlik ◽  
Tomasz Staśkiewicz ◽  
Wojciech Sumelka

In tram operations, flange wear is predominant due to the low-radius curves and inappropriate technical conditions of the infrastructure; hence, investigations should be focused on the interaction between the wheel flange and the rail gauge corner. Moreover, the calculation methods based on the Hertzian model (elliptic contact patch) provide less accurate results due to the contact occurrence in the wheel flange region. This paper presents a methodology of a finite element method to predict the tram wheel wear in complex motions. The new procedure is based on the Abaqus software and several other sub-procedures written in Python and Fortran. Multibody simulations were used to determine the wheel–rail alignment. In this method, accuracy was chosen at the expense of the computational effort. The main steps are: preparation of models and ride scenarios, multibody simulation for calculating the wheel–rail alignment for different track scenarios and multiple runs of finite element method analysis to determine the wear magnitude. The proposed methodology presents a good agreement with the measurements and can be considered as guidelines for a proper configuration of the flange-designing experimental setup where the influence of the technical conditions of the infrastructure should be introduced adequately.


2018 ◽  
Vol 196 ◽  
pp. 01055
Author(s):  
Sławomir Dudziak ◽  
Zofia Kozyra

Dynamic analyses play an important role in the process of designing buildings in the vicinity of transportation routes. The Finite Element Method is the most popular modelling technique, because it allows to simulate the structure response in the higher frequency range properly. However, the results of such analyses depend on many factors and can differ a lot. This paper discusses the impact of the building mass estimation and neglecting or including damping in the analysis on the assessment of influence of vibrations due to traffic on people.


1975 ◽  
Vol 10 (3) ◽  
pp. 167-171 ◽  
Author(s):  
F Ginesu ◽  
B Picasso ◽  
P Priolo

Results on the plastic collapse behaviour of an axisymmetric rotating shell, obtained by Limit Analysis and the Finite Element Method, are in good agreement with experimental data. The Finite Element Method, though computationally rather costly, permits, however, a more complete analysis of elasto-plastic behaviour. For the present case, the Limit Analysis has the advantage of greater computational simplicity and leads to a quite satisfactory forecast of collapse speed from the engineering point of view.


1997 ◽  
Vol 1 (2) ◽  
pp. 159-165 ◽  
Author(s):  
Wibisono Hartono

This paper presents a nonlinear elastic analysis of cantilever beam subjected to two follower forces. Those two proportional forces are always perpendicular to the beam axis. The solution of differential equations based on the large displacement theory, known as elastica is obtained with the help of principle of elastic similarity. For comparison purpose, numerical results using the finite element method are also presented and the results show good agreement.


Sign in / Sign up

Export Citation Format

Share Document