scholarly journals Asian soybean rust control in response to rainfall simulation after fungicide application

2020 ◽  
Vol 43 ◽  
pp. e45689
Author(s):  
Amanda Chechi ◽  
Carolina Cardoso Deuner ◽  
Carlos Alberto Forcelini ◽  
Walter Boller

Asian soybean rust (Phakopsora pachyrhizi) is the main disease that affects soybean in Brazil. Fungicide applications are the main control method, but they can be influenced by the occurrence of rain. We aimed to study the control of Asian soybean rust in response to the occurrence of simulated rainfall at different times after fungicide application. The penetrant fungicides trifloxystrobin + prothioconazole (60 + 70 g a.i. ha-1) and azoxystrobin + benzovindiflupyr (60 + 30 g a.i. ha-1) and the nonpenetrant fungicides mancozeb (1,500 g a.i. ha-1), chlorothalonil (1,440 g a.i. ha-1), and copper oxychloride (672 g a.i. ha-1) were tested using two spray volumes: 70 and 150 L ha-1. Rain was simulated from 30 to 240 minutes after fungicide application. Soybean leaflets were collected and inoculated with a spore suspension of P. pachyrhizi (5.0 x 104 mL-1) and incubated in plastic boxes for 20 days. The trials were repeated twice. Nonpenetrant fungicides were more susceptible to rain washing, mainly when the 70 L ha-1 spray volume was used. For the penetrative fungicides, the best control percentages were obtained when the rainfall occurred between 120 and 180 minutes after application, while the protective fungicides had the best control percentages when the rainfall occurred approximately 240 minutes after application. The Asian rust control is affected by the characteristics of the fungicide applied, by the time interval between fungicide application and rain occurrence and by the spray volume.

2020 ◽  
Vol 50 (1) ◽  
Author(s):  
Amanda Chechi ◽  
Valéria Cecília Ghissi-Mazetti ◽  
Elias Zuchelli ◽  
Carolina Cardoso Deuner ◽  
Carlos Alberto Forcelini ◽  
...  

ABSTRACT: Asian soybean rust is one of the most destructive diseases that can be found in this crop. It can be largely controlled by fungicide application. The objective was to assess the sensitivity of P. pachyrhizi isolates to fungicides. The tests were performed in a completely randomized design, with six replicates. The sensitivity of twelve isolates to site-specific and multisite fungicides at concentrations of 0.1; 1.0; 10.0, and 100.0 mg L-1, plus a control with absence of fungicide (0.0 mg L-1) was assessed. Soybean leaflets were immersed in the appropriate fungicide solutions, disposed in wet chambers in plastic boxes, and inoculated using each uredinia suspension of P. pachyhrizi (5.0 x 104 uredospores mL-1), separately. Boxes were incubated for 20 days at a temperature of 23°C and a 12-hour photoperiod. Next, the number of uredinia per cm2 on the abaxial face of each leaflet was evaluated. The active ingredients prothioconazole, trifloxystrobin, fluxapiroxade, trifloxystrobin + prothioconazole, trifloxystrobin + bixafen + prothioconazole, azoxystrobin + benzovindiflupyr, and azoxystrobin + benzovindiflupyr + diphenoconazole were highly fungitoxic for the majority of the isolates, with EC50 lower than 1.0 mg L-1. Diphenoconazole, azoxystrobin, and fenpropimorph were considered moderately fungitoxic for nine of the twelve isolates, with EC50 between 1 and 10 mg L-1. The multisites mancozeb and copper oxychloride presented EC50 responses classified as low toxic for the twelve isolates and eight for chlorothalonil (EC50 between 10 mg L-1 and 50 mg L-1). Site-specific fungicides showed high-to-moderate fungitoxicity to P. pachyrhizi isolates, even as the multisites presented moderate-to-less toxic activity.


2016 ◽  
Vol 37 (6) ◽  
pp. 3881 ◽  
Author(s):  
Marlon Tagliapietra Stefanello ◽  
Ricardo Silveiro Balardin ◽  
Simone Gripa Minuzzi ◽  
Diego Dalla Favera ◽  
Leandro Nascimento Marques ◽  
...  

Environmental factors affect the performance of fungicides in soybean (Glycine max (L.) Merr.). They also influence the residual activity of the products applied to the leaves. The objective of this study was to assess the control effectiveness of the interaction between fungicide application and rainfall simulation on Asian Soybean Rust (ASR). Two experiments were conducted, one in the greenhouse, in a completely randomized design, and the other in the field, in a randomized block design. Both the experiments had the same factorial arrangement of 6x5, with four replications. Factor A: Five fungicide applications time at 0400 h, 0900 h, 1400 h, 1800 h, 2300 h and, a control with no application; Factor B: four intervals of time between the application of fungicide and rainfall simulation at 0, 30, 60 and 120 min for the experiment in the greenhouse and at 2, 30, 60, 120 min for the experiment in the field. A control was included for both the experiments with no rainfall. The number of days to the appearance of the first pustules was determined, along with severity of ASR, relative chlorophyll index and productivity. It was found that the ASR control effectiveness of fungicide applications in soybean plants in sunlight was less efficient with rainfall simulation. The rainfall simulation had greater negative effect on disease control effectiveness in applications conducted at night under dew conditions. The application conducted at 0900 h showed the greatest disease control effectiveness in both greenhouse and in the field conditions. The 1400 h application showed decreased fungicide control residual and ASR control effectiveness, possibly due to a combination of the low relative humidity and high temperature. Rainfall simulation carried out at 120 min after application still had the ability to affect the ASR control effectiveness.


2018 ◽  
Vol 44 (4) ◽  
pp. 326-331 ◽  
Author(s):  
Amanda Chechi ◽  
Walter Boller ◽  
Carlos Alberto Forcelini ◽  
Rafael Roehrig ◽  
Elias Zuchelli

ABSTRACT The purpose of this study was to check the influence of leaf area index, spray volumes and applicable quantities of fungicide during the protection period, and for control of Asian soybean rust. All tests were conducted in the field and in the laboratory between 2014 and 2016. The quantity of fungicide and the spray volume were varied in the application of fungicides on soybean plants with different leaf area index. Rainfall simulation tests were also carried out at different times after application of fungicide. The spray volume and application rate of fungicide should be adequately proportioned according to the leaf area index of the soybean cultivar. The closer to the time of application that the rain occurs, the lower the control obtained by applying the fungicide. The leaf area index, the fungicide application rates, and the spray volumes influenced the protection period of fungicides and the control of Asian soybean rust.


2019 ◽  
Vol 45 (3) ◽  
pp. 261-264
Author(s):  
Erlei Melo Reis ◽  
Mateus Zanatta ◽  
Andrea Camargo Reis

ABSTRACT In an experiment conducted in the field, during the 2017/18 growing season, with the soybean cultivar Syn 1561 IPRO, the interaction of chlorothalonil levels with application intervals was evaluated for the control of Asian soybean rust, caused by Phakopsora pachyrhizi. The first fungicide application was performed in V8 stage, 44 days after emergence, with 1.85% rust leaflet incidence. The experiment consisted of a factorial arrangement with five fungicide levels (1.0, 1.5, 2.0, 2.5 and 3.0 L/ha) applied at 8, 12 and 16-day intervals, using randomized block treatments and four replicates. A self-propelled sprayer with 16 bars, XR11001VS nozzles and 150 L/ha volume was employed. Leaflet rust severity in R5.4 stage and grain yield were evaluated. Data were subjected to analysis of variance, and means were compared according to Tukey’s test. At eight-day intervals (six sprayings), control ranged from 75% to 93%; at 12-day intervals (four sprayings), it ranged from 35 to 63%, and at 16-day intervals (three sprayings), control ranged from 15 to 29% according to the sprayed levels. The longer the interval between applications, the lower the response of the used level for rust control and soybean grain yield. Chlorothalonil showed fungitoxicity to integrate a program of anti-resistance strategies to control soybean rust.


2013 ◽  
Vol 40 (10) ◽  
pp. 1029 ◽  
Author(s):  
Aguida M. A. P. Morales ◽  
Jamie A. O'Rourke ◽  
Martijn van de Mortel ◽  
Katherine T. Scheider ◽  
Timothy J. Bancroft ◽  
...  

Rpp4 (Resistance to Phakopsora pachyrhizi 4) confers resistance to Phakopsora pachyrhizi Sydow, the causal agent of Asian soybean rust (ASR). By combining expression profiling and virus induced gene silencing (VIGS), we are developing a genetic framework for Rpp4-mediated resistance. We measured gene expression in mock-inoculated and P. pachyrhizi-infected leaves of resistant soybean accession PI459025B (Rpp4) and the susceptible cultivar (Williams 82) across a 12-day time course. Unexpectedly, two biphasic responses were identified. In the incompatible reaction, genes induced at 12 h after infection (hai) were not differentially expressed at 24 hai, but were induced at 72 hai. In contrast, genes repressed at 12 hai were not differentially expressed from 24 to 144 hai, but were repressed 216 hai and later. To differentiate between basal and resistance-gene (R-gene) mediated defence responses, we compared gene expression in Rpp4-silenced and empty vector-treated PI459025B plants 14 days after infection (dai) with P. pachyrhizi. This identified genes, including transcription factors, whose differential expression is dependent upon Rpp4. To identify differentially expressed genes conserved across multiple P. pachyrhizi resistance pathways, Rpp4 expression datasets were compared with microarray data previously generated for Rpp2 and Rpp3-mediated defence responses. Fourteen transcription factors common to all resistant and susceptible responses were identified, as well as fourteen transcription factors unique to R-gene-mediated resistance responses. These genes are targets for future P. pachyrhizi resistance research.


2013 ◽  
Vol 13 (1) ◽  
pp. 75-82 ◽  
Author(s):  
Naoki Yamanaka ◽  
Noelle G Lemos ◽  
Miori Uno ◽  
Hajime Akamatsu ◽  
Yuichi Yamaoka ◽  
...  

In this study, the influence of genetic background on the resistance level of a soybean line carrying Rpp2, Rpp4, and Rpp5 was evaluated by backcrossing it with a susceptible variety. It was also evaluated eight lines which carry these Rpp genes against five Asian soybean rust (ASR) isolates, in order to determine the likely range of resistance against ASR isolates differing in pathogenicity. The results indicated that a high level of resistance against various ASR isolates could be retained in lines carrying the three Rpp genes in susceptible genetic backgrounds, although minor influences of plant genetic background and ASR pathogenicity to the ASR resistance could occur. Thus, lines with the pyramided three Rpp genes should be effective against a complex pathogen population consisting of diverse Phakopsora pachyrhizi isolates.


2011 ◽  
Vol 31 (4) ◽  
pp. 695-703 ◽  
Author(s):  
Ulisses R. Antuniassi ◽  
Edivaldo D. Velini ◽  
Rone B. de Oliveira ◽  
Maria A. Peres-Oliveira ◽  
Zulema N. Figueiredo

The soybean rust caused by Phakopsora pachyrhizi is considered the main soybean disease and consequently the appropriate selection and the use of spraying equipment are vital for its control. The aim of this study was to evaluate the performance of aerial application equipment for soybean rust control. It was used: Micronair AU 5000 at 10 L ha-1 (with oil) and at 20 L ha-1 (without oil); Stol ARD atomizer at 10 and 20 L ha-1 (both with oil) and Spectrum (electrostatic) at 10 L ha-1 (without oil). The adjuvant was cotton oil (1.0 L ha-1) with emulsifier (BR 455) at 0.025 L ha-1. The field trial was set up at the 3rd fungicide application, when f four replications of each treatment. There were no statistical differences among treatments related to fungicide deposits by at a Confidence Interval of 95%. It was observed that the best results were obtained with Micronair (10 L ha-1 with oil), Stol (20 L ha-1 with oil) and electrostatic system at 10 L ha-1 with the lowest relative humidity (64%).


2020 ◽  
Vol 40 (6) ◽  
Author(s):  
Luciano Nobuhiro Aoyagi ◽  
Yukie Muraki ◽  
Naoki Yamanaka

Abstract Phakopsora pachyrhizi is an obligatory biotrophic fungus that causes Asian soybean rust (ASR) disease. ASR control primarily involves chemical control and the use of resistant soybean cultivars carrying an Rpp (resistance to P. pachyrhizi) gene. This study aimed to characterize the ASR resistance of three soybean Asian landraces. By screening the world core collection (WC) of soybean, which consists of 80 varieties, three landraces were identified in Southeast Asia as resistant to ASR. Genetic mapping using the F2 population derived from a cross with an ASR-susceptible variety, BRS 184, indicated that KS 1034 (WC2) has ASR resistance conferred by a single dominant resistance gene, mapped on chromosome 18, in the same region where Rpp1 was mapped previously. The BRS 184 × WC61 (COL/THAI/1986/THAI-80) F2 population, on the other hand, showed an ASR resistance locus mapped by quantitative trait locus analysis on chromosome 6, in the region where the resistance conferred by PI 416764 Rpp3 resides, with a logarithm of the odds score peak at the same position as the marker, Satt079, while the BRS 184 × WC51 (HM 39) population showed the resistance to ASR allocated between Satt079 and Sat_263 markers, also in the region where Rpp3 was mapped previously. Both WC51 and WC61 have the same infection profile as FT-2 and PI 462312 when tested against the same ASR isolate panel. These three WCs can be used in MAS programs for introgression of Rpp1 and Rpp3 and the development of ASR-resistant cultivars in the breeding program.


2006 ◽  
Vol 31 (6) ◽  
pp. 533-544 ◽  
Author(s):  
Emerson M. Del Ponte ◽  
Cláudia V. Godoy ◽  
Marcelo G. Canteri ◽  
Erlei M. Reis ◽  
X.B. Yang

Asian rust of soybean [Glycine max (L.) Merril] is one of the most important fungal diseases of this crop worldwide. The recent introduction of Phakopsora pachyrhizi Syd. & P. Syd in the Americas represents a major threat to soybean production in the main growing regions, and significant losses have already been reported. P. pachyrhizi is extremely aggressive under favorable weather conditions, causing rapid plant defoliation. Epidemiological studies, under both controlled and natural environmental conditions, have been done for several decades with the aim of elucidating factors that affect the disease cycle as a basis for disease modeling. The recent spread of Asian soybean rust to major production regions in the world has promoted new development, testing and application of mathematical models to assess the risk and predict the disease. These efforts have included the integration of new data, epidemiological knowledge, statistical methods, and advances in computer simulation to develop models and systems with different spatial and temporal scales, objectives and audience. In this review, we present a comprehensive discussion on the models and systems that have been tested to predict and assess the risk of Asian soybean rust. Limitations, uncertainties and challenges for modelers are also discussed.


Sign in / Sign up

Export Citation Format

Share Document