Properties of Compressed Interlock Earth Blocks Manufactured from Locally Available Lateritic Soil for Low Cost Housing Projects

2021 ◽  
Vol 39 ◽  
pp. 85-93
Author(s):  
Dissanayake Dmdok

This investigation was carried out to identify the engineering properties of compressed interlock earth blocks manufactured from locally available lateritic soil and introduce to use the manufactured soil blocks to minimize the material and finishing cost for the low cost housing projects. The soil samples used in this study were well-graded lateritic sandy soil which has the composition of 1.9% gravel, 94% sand and 4.1% silt / clay. These soil samples were passed through the 100-mesh sieve and mixed with ordinary Portland cement to prepare the admixture. While compressing through a hydraulics jack by varying the compositions and the volume of soil-cement admixtures, compaction soil blocks were manufactured in a locally fabricated 250 mm x125 mm x100 mm standard steel mould. The manufactured soil blocks allowed to cure while spraying small quantity of water and covering with polythene for 28 days. Average compressive strengths of soil blocks made with 5% cement with 1.6:1 and 1.8:1 volume compactions were 1.3 Mpa and 1.9 Mpa, respectively. However, both compressive strength values were less than the standard limits of 2.8 MPa stated in SLS 1382:2009, local standards for soil blocks used for construction industry. However, soil blocks made with 10% cement under same compaction ratios attained compressive strengths of 3.0 MPa and 3.6 MPa respectively and it is above the required standards limits. However, 15% and 20% cement containing earth blocks have much higher compressive strengths but increase the cost of production. Regression analysis results confirmed the strong correlation between cement content and the compressive strength of the soil bricks. The soil bricks manufactured with more than 12.06% cement soil mix by maintaining compaction ratio into 1.6:1 or Soil bricks manufactured with more than 5.16% cement mix by maintaining compaction ratio into 1.8:1 will produce standards soil bricks for construction industry and these results further confirmed that wet and dry compressive strength of soil bricks will increase with increasing the compaction ratio and the cement content. However, when considering the compressive strength, water absorption level and cost effectiveness, soil bricks manufactured by maintaining compaction ratio into 1.8:1 with more than 5.16% cement mix will produce required standards cost effective soil bricks for construction industry.

MRS Advances ◽  
2020 ◽  
Vol 5 (25) ◽  
pp. 1285-1294 ◽  
Author(s):  
W Benhaoua ◽  
K. Grine ◽  
S. Kenai

ABSTRACTStabilized earth is a very ancient material that has been used in many countries as a low cost, environment friendly construction material. However, its durability under humid environments is low. Stabilization using cement, lime and natural fibres could enhance its durability and lowers the risk of cracking. This paper presents an experimental investigation into the performance of stabilised local soil by either, cement mixed with a proportion of granulated blast furnace slag (GBFS) /or straw naturel fibres. Unconfined compressive strength (UCS), shrinkage, wetting and drying, capillary absorption and thermal conductivity tests were performed on both untreated soil samples and stabilised soil samples. The results show that stabilising the soil with cement and GBFS increased both compressive strength, durability, thermal conductivity and decreased the capillary absorption and the shrinkage. The addition of natural wheat fibres increased the capillary absorption but leads to a decrease in the thermal conductivity and to a further reduction in the shrinkage and hence a better insulating less prone to cracking material.


2019 ◽  
Vol 814 ◽  
pp. 399-403
Author(s):  
Anuchit Uchaipichat

This paper presents the relationship between the dynamic cone penetration (DCP) test results and the unconfined compressive strength of lateritic cemented soils. A series of DCP tests and unconfined compressive strength was performed on lateritic cemented soil. The soils sample used in this study was lateritic soil. The test results for the DCP tests are presented in terms of penetration index. It can be observed that the penetration index decreased with increasing curing period and cement content. Moreover, the unconfined compressive strength of cemented soils increased with curing period and cement content. The relationship between unconfined compressive strength and penetration index is presented. A unique relationship for unconfined compressive strength can be obtained.


Author(s):  
Petro Mykytyuk ◽  
Alla Kasych

Introduction. In the article; based on research of modern Ukrainian and international experience in the field of improvement of mechanisms of development of innovations in the field of housing; the existing barriers and specifics of the development of the industry are analyzed; the main opportunities and perspective directions of program-target support of organizational-economic and managerial innovations are opened with the purpose of increasing accessibility and opportunities for improving the living conditions of citizens; minimizing public utility costs; switching to low-cost housing for yoga operation. Specific directions for state and regional authorities to increase the investment attractiveness of innovative housing construction and the transition of the industry to the innovative vector of development are proposed. The purpose of the study is to consider modern mechanisms for the development of innovations in the construction industry. Results. The dependence of the development of the construction industry with the development of related industries; the level of employment is revealed. It was also determined that for the successful development of the industry; appropriate conditions must be created to increase the investment attractiveness of innovative housing. The main barriers to the development of innovative housingin Ukraine were also identified. Discussion. Prospects for further development of the study are to improve regulatory and legal incentives for the development of material production; stimulate the transition to new technologies of housing; development of advanced automated systems for design and management of buildings based on BIM-technologies and development of rental housing under concession agreements with investors.


2019 ◽  
Vol 8 (4) ◽  
pp. 9226-9230

Due to Modernization and urbanization constructing industries are fast growing also it leading to high demand of constructing materials because of expensive prices, and for the construction industry, usage of steel is currently limited heavily Many studies have been carried out to identify highly available, low cost innovative material to use in construction industry as a solution to meet the ever increasing demand for raw material. Bamboo was used as a construction material as a coarse aggregate, steel reinforcement. Bamboo has a higher compressive strength than wood, brick, or concrete and a tensile strength that rivals steel. water absorption in bamboo was the main problem used for construction .because The durability of the concrete is largely affected by absorption of water. Also poly ethylene bags are widely used in the country and its disposal after use causes more problems ,Mismanaged waste of polyethylene bags is the current threatening to the environment this waste is largely availbe its abundant high resistance to insects, fungi, animals, as well as molds, mildew, rot and many chemicals. In this study cubic bamboo was used as a coarse aggregate and it was coated with the waste LDPE bag melt ,as one of the coating material and other one is neem oil.and it was investigated to find the water absorption and turbidity, antifungal activity and compressive strength some other parameters in bamboo material with coatings it was observed that compared to untreated bamboo the polyethylenene coated bamboo material shows reduction in water absorption level and turbity.


2019 ◽  
Vol 14 (2) ◽  
pp. 95-106
Author(s):  
Oluwaseun Adetayo ◽  
Olugbenga Amu ◽  
Sunday Alabi

AbstractThis study investigated the suitability of pulverized snail shell (PSS) as partial replacement of cement stabilized soil in foundation constructions. Preliminary and engineering tests were carried out on the soil samples. The optimum cement content fixed at 11% in correlation to Unified Soil Classification System, the PSS was introduced at varying percentages of 2%, 4%, 6%, 8% and 10%. Results revealed that, addition of PSS and 11% cement to lateritic soil caused a reduction in both liquid limits and plasticity index and an increased in plastic limits for all samples. Engineering tests showed the maximum dry density at optimum cement increased from 1493.34 ± 103.58 kg.m−3 to 1632 ± 435.81 kg.m−3 for sample A; 1476.77 ± 367.51 kg.m−3 to 1668 ± 202.58 kg.m−3 for sample B; 1460.77 ± 623.58 kg.m−3 to 1651 ± 135.45 kg.m−3 for sample C. The CBR recorded highest value at 4%PSS optimum cement for all samples. The addition of pulverized snail shell increased the strength of cement stabilized lateritic soil for structural foundation construction.


Author(s):  
Musaib Bashir Dar

Abstract: In this developing era concrete and cement mortar are widely used by the construction industry, with this development. Large number of industrial wastes are generated and if these wastes are not properly used it will create severe problems, keeping the environment in mind, concrete engineers are trying to find some alternative materials which will not only replaces the cement content but also improves strength of concrete. As we also know that during the manufacturing of cement large amount of Co2 is released into the environment, but if we use such material that will replace the quantity of cement content therefore indirectly, we are contributing towards the prevention of our planet from global warming and other pollutions. Also, in this research work the Rice Husk Ash is used. the rice husk ash obtained from the rice processing units, by adding this product with concrete, not only replaces the cement content but also increases the strength of concrete like compressive strength etc. The Rice husk ash was incorporated with concrete with varying percentages of 2.5% ,5% ,7.5%, & 10%. the proper codal precautions were followed during the manufacture of concrete cubes of 150x150x150mm. it was concluded that the strength of concrete increased by incorporated the rice husk ash. Keywords: Concrete, RHA, Compressive strength, Industrial wastes, Cement etc


2020 ◽  
Vol 92 (6) ◽  
pp. 99-112
Author(s):  
PHARAM SINGH THAPA ◽  
◽  
GOVIND PRASAD LAMICHHANE ◽  

In order to contribute to the sustainability of the brick construction sector, this work studied the formation of economic and environment friendly sandy clay brick. Therefore, the goal was set to be developed, a “sandy clay brick with cement mix”, which has more structural durability, less weight, low cost, together with high performance with respect to indoor air quality. In this research, variation on soil – cement brick with gradual increase in cement content replacing soil material and how the soil- cement brick may be studied using soil and cement as binder by fulfilling the requirement of National Building Code (NBC). The water cement ratio was kept controlled and all other material properties used were same. The effect was seen on compressive strength because the 28 days strength of brick is slightly more when soil is replaced by 15% cement content then no replacement of soil by cement strength. Taking about 11 samples starting from 0 % to 50 % cement content it was found that sandy clay soil – cement brick with compressive strength up to 23.44 MPa with traditional value may be achieved.


2019 ◽  
Vol 11 (21) ◽  
pp. 6005 ◽  
Author(s):  
Elnaz Safapour ◽  
Sharareh Kermanshachi ◽  
Bahaa Alfasi ◽  
Reza Akhavian

Many construction projects suffer from schedule delays that ultimately lead to considerable cost overruns and defeat the purpose of low-cost housing (LCH), which is to support low-income earners. It is, therefore, vital that the schedule delays and cost overruns be minimized. The objectives of this research were to investigate, identify, and classify the schedule-delay indicators (SDIs), prioritize them based on their level of impact, and formulate constructive strategies to improve the schedule performance. To achieve the objectives set forth, 68 interviews were conducted with professionals who are active in LCH projects, and a structured survey was developed and distributed to other experts involved in LCH projects to validate the result of the interviews and collect additional data. Survey responses were collected from 101 individuals and were analyzed. The significant SDIs were identified and classified by the research team and were ranked and prioritized, using the Relative Importance Index (RII) method. The results demonstrated that the identified SDIs could be classified into the following eight main categories: legal, design and technology, project characteristic, project management, material resource, human resource, location, and finance. The outcomes of this study will help project managers and stakeholders identify the causes of schedule delays early in the project and implement effective strategies for improving project performance in low-cost housing projects.


Sign in / Sign up

Export Citation Format

Share Document