Effect of Plant in Two Atrium Building Comfort: Report on Two Field-Monitored Case Studies

2011 ◽  
Vol 110-116 ◽  
pp. 1958-1962
Author(s):  
Marziyeh Kazemzadeh ◽  
Mansureh Tahbaz

This paper present the field-measured thermal performance of two atrium building in a clinic center located in Kerman, where winter is cold and dry. The case studies are an enclosed atrium space. The atriums have open corridors at each storey connecting them to adjacent space. The site measurement and monitoring work were carried out for one day covering clear day in November 2010. The weather conditions during the day measuring period were stable and heating system was off. This study will investigated about different temperature of atrium levels with plant and without plant. This study has shown that in cold and clear winter day, when average of external relative humidity in this day was around 9%,in the atrium relative humidity changed between 10%- 22% and total temperature in atrium level were changed between 18'C-28'C. whilst in the atrium without plant this range were between 3%-23% and 15'C-35'C respectively.

2021 ◽  
Author(s):  
Jamie Fine

Society’s use of fossil fuels has led to increasingly high levels of CO2 in the atmosphere. These levels have been linked to global average temperature rises, and increases in the severity and frequency of major weather events. To combat these effects, nations around the world have committed to reducing their CO2 emissions, and transition to renewable energy. This thesis focuses on the development of a novel solar heating system, which combines a hybrid solar panel and cascade heat pump. The thesis begins by presenting a high-level literature review of solar and heat pump technologies, followed by the initial design development of the system. Two design iterations are presented, illustrating that the final design was selected because it exhibits improved peak heat output, and reduced sensitivity to panel temperature. Next, a manuscript-based chapter is presented that focuses on utilizing the proposed solar heating system for water distillation. Case studies are presented that compare the performance of the proposed system with a solar still at four different locations. The final conclusion from these studies is that using the proposed system offers area-based performance improvements of 780% compared to a basic solar still. A second manuscript-based study is then presented, which focuses on utilizing the proposed solar heating system for domestic hot water production. Additional case studies are detailed that compare the proposed system to an evacuated tube design, and a single heat pump. The conclusions from these studies are that the proposed system exceeds the performance of the evacuated tube system by up to 64%, and that the proposed system is most beneficial during seasons with higher average dry-bulb temperatures, and increased solar irradiation. A final manuscript-based study is then presented, which focuses on a methodology for improving alternate mode thermal performance estimates for hybrid solar panels. The conclusion from this study is that the proposed methodology can successfully estimate thermal performance within 5% of actual values. Each of these studies contributes to the project goal of developing a novel solar energy heating system, which can be further developed to reduce global CO2 emissions, and reduce the effects of climate change.


2021 ◽  
Author(s):  
Jamie Fine

Society’s use of fossil fuels has led to increasingly high levels of CO2 in the atmosphere. These levels have been linked to global average temperature rises, and increases in the severity and frequency of major weather events. To combat these effects, nations around the world have committed to reducing their CO2 emissions, and transition to renewable energy. This thesis focuses on the development of a novel solar heating system, which combines a hybrid solar panel and cascade heat pump. The thesis begins by presenting a high-level literature review of solar and heat pump technologies, followed by the initial design development of the system. Two design iterations are presented, illustrating that the final design was selected because it exhibits improved peak heat output, and reduced sensitivity to panel temperature. Next, a manuscript-based chapter is presented that focuses on utilizing the proposed solar heating system for water distillation. Case studies are presented that compare the performance of the proposed system with a solar still at four different locations. The final conclusion from these studies is that using the proposed system offers area-based performance improvements of 780% compared to a basic solar still. A second manuscript-based study is then presented, which focuses on utilizing the proposed solar heating system for domestic hot water production. Additional case studies are detailed that compare the proposed system to an evacuated tube design, and a single heat pump. The conclusions from these studies are that the proposed system exceeds the performance of the evacuated tube system by up to 64%, and that the proposed system is most beneficial during seasons with higher average dry-bulb temperatures, and increased solar irradiation. A final manuscript-based study is then presented, which focuses on a methodology for improving alternate mode thermal performance estimates for hybrid solar panels. The conclusion from this study is that the proposed methodology can successfully estimate thermal performance within 5% of actual values. Each of these studies contributes to the project goal of developing a novel solar energy heating system, which can be further developed to reduce global CO2 emissions, and reduce the effects of climate change.


2016 ◽  
Vol 835 ◽  
pp. 416-422
Author(s):  
Fahanim Abdul Rashid ◽  
Asrul Mahjuddin Ressang Aminuddin ◽  
Norafida Ab. Ghaffar

Over the past decade many studies were conducted to investigate the thermal performance of terraced houses in Malaysia. It was found that this housing typology failed to address the need for thermal comfort and alternatives to the narrow frontage with deep plan have been proposed with simulated good thermal performance. Although this is good progress for new generation of terraced houses, millions of units of terraced houses are still in use and new units with the outdated existing plans continued to get built due to consistently very high demand due to progressive urbanisation and rapid economic developments. Therefore, it is imperative that the thermal comfort issue for existing terraced houses is dealt with and through this paper a comparison between single and double storey terraced houses is made through analysis of indoor environmental monitoring (ambient temperature, relative humidity and air velocity) of two (2) selected case studies in Merlimau, Melaka. Contrary to popular belief, it is found that there is no statistical difference between both sets of indoor temperature and relative humidity between the case studies. This finding is indicative of the consistent and stable temporal temperature highs and lows in a 24 hour cycle despite the difference in indoor volume and distance between the ground floor and the roof cavity. Much of the reason is due to the materiality of the terraced houses construction and unsealed and uninsulated building envelope. Therefore, further research into improving the thermal performance of existing terraced houses of any typology have to be conducted to allow thermal comfort and to reduce reliance on high energy consuming air-conditioning.


Author(s):  
Angélica Felicidade Guião Marcato Costa ◽  
João Alexandre Paschoalin Filho ◽  
Tatiana Tucunduva Philipi Cortese ◽  
Brenda Chaves Coelho Leite

This research aimed at comparing the thermal performance provided in experimental modules, one of which was performed with conventional cover, made of asbestos cement tiles; an another with green cover. The structure of the studied modules was executed using Light Steel Frame technique. As an experimental research, modules were built in a wide place, without the interference of shading. Instruments were installed in the inner part of the modules to measure the following data: air temperature, relative humidity. From the collected data, representative episodes have been chosen for the studies that aimed to compare the comfort provided by both modules, built with different roofs. As result, it was verified that the module with green roof had better performance than the module covered with asbestos cement tile in all selected episodes. The module covered with green roof maintained lower internal temperature variation throughout the days, indicating that the green roof has characteristic thermal insulation, reducing the heat flow from the roof.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4846
Author(s):  
Dušan Marković ◽  
Dejan Vujičić ◽  
Snežana Tanasković ◽  
Borislav Đorđević ◽  
Siniša Ranđić ◽  
...  

The appearance of pest insects can lead to a loss in yield if farmers do not respond in a timely manner to suppress their spread. Occurrences and numbers of insects can be monitored through insect traps, which include their permanent touring and checking of their condition. Another more efficient way is to set up sensor devices with a camera at the traps that will photograph the traps and forward the images to the Internet, where the pest insect’s appearance will be predicted by image analysis. Weather conditions, temperature and relative humidity are the parameters that affect the appearance of some pests, such as Helicoverpa armigera. This paper presents a model of machine learning that can predict the appearance of insects during a season on a daily basis, taking into account the air temperature and relative humidity. Several machine learning algorithms for classification were applied and their accuracy for the prediction of insect occurrence was presented (up to 76.5%). Since the data used for testing were given in chronological order according to the days when the measurement was performed, the existing model was expanded to take into account the periods of three and five days. The extended method showed better accuracy of prediction and a lower percentage of false detections. In the case of a period of five days, the accuracy of the affected detections was 86.3%, while the percentage of false detections was 11%. The proposed model of machine learning can help farmers to detect the occurrence of pests and save the time and resources needed to check the fields.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 997
Author(s):  
Davide Coraci ◽  
Silvio Brandi ◽  
Marco Savino Piscitelli ◽  
Alfonso Capozzoli

Recently, a growing interest has been observed in HVAC control systems based on Artificial Intelligence, to improve comfort conditions while avoiding unnecessary energy consumption. In this work, a model-free algorithm belonging to the Deep Reinforcement Learning (DRL) class, Soft Actor-Critic, was implemented to control the supply water temperature to radiant terminal units of a heating system serving an office building. The controller was trained online, and a preliminary sensitivity analysis on hyperparameters was performed to assess their influence on the agent performance. The DRL agent with the best performance was compared to a rule-based controller assumed as a baseline during a three-month heating season. The DRL controller outperformed the baseline after two weeks of deployment, with an overall performance improvement related to control of indoor temperature conditions. Moreover, the adaptability of the DRL agent was tested for various control scenarios, simulating changes of external weather conditions, indoor temperature setpoint, building envelope features and occupancy patterns. The agent dynamically deployed, despite a slight increase in energy consumption, led to an improvement of indoor temperature control, reducing the cumulative sum of temperature violations on average for all scenarios by 75% and 48% compared to the baseline and statically deployed agent respectively.


2020 ◽  
Vol 13 (1) ◽  
pp. 201
Author(s):  
Pau Chung Leng ◽  
Gabriel Hoh Teck Ling ◽  
Mohd Hamdan Ahmad ◽  
Dilshan Remaz Ossen ◽  
Eeydzah Aminudin ◽  
...  

The provision requirement of 10% openings of the total floor area stated in the Uniform Building By-Law 1984 Malaysia is essential for natural lighting and ventilation purposes. However, focusing on natural ventilation, the effectiveness of thermal performance in landed residential buildings has never been empirically measured and proven, as most of the research emphasized simulation modeling lacking sufficient empirical validation. Therefore, this paper drawing on field measurement investigates natural ventilation performance in terraced housing with an air-well system. The key concern as to what extent the current air-well system serving as a ventilator is effective to provide better thermal performance is to be addressed. By adopting an existing single-story air-welled terrace house, indoor environmental conditions and thermal performance were monitored and measured using HOBO U12 air temperature and humidity, the HOBO U12 anemometer, and the Delta Ohm HD32.3 Wet Bulb Globe Temperature meter for a six-month duration. The results show that the air temperature of the air well ranged from 27.48 °C to 30.92 °C, with a mean relative humidity of 72.67% to 79.25%. The mean air temperature for a test room (single-sided ventilation room) ranged from 28.04 °C to 30.92 °C, with a relative humidity of 70.16% to 76.00%. These empirical findings are of importance, offering novel policy insights and suggestions. Since the minimum provision of 10% openings has been revealed to be less effective to provide desirable thermal performance and comfort, mandatory compliance with and the necessity of the bylaw requirement should be revisited.


2012 ◽  
Vol 610-613 ◽  
pp. 1033-1040
Author(s):  
Wei Dai ◽  
Jia Qi Gao ◽  
Bo Wang ◽  
Feng Ouyang

Effects of weather conditions including temperature, relative humidity, wind speed, wind and direction on PM2.5 were studied using statistical methods. PM2.5 samples were collected during the summer and the winter in a suburb of Shenzhen. Then, correlations, hypothesis test and statistical distribution of PM2.5 and meteorological data were analyzed with IBM SPSS predictive analytics software. Seasonal and daily variations of PM2.5 have been found and these mainly resulted from the weather effects.


Sign in / Sign up

Export Citation Format

Share Document