Study of Structure and Optical Properties of Magnetron Sputtered ZnS Thin Films by Annealing

2011 ◽  
Vol 130-134 ◽  
pp. 1379-1382
Author(s):  
Rui Fang Chen ◽  
Jie Yu ◽  
Yin Qun Hua ◽  
Rui Li Xu ◽  
Hai Xia Liu

Nanocrystalline ZnS thin films were deposited on glass substrates at 300W and 0.6Pa by using radio frequency magnetron sputtering, and then annealed at different temperatures. This work investigated the influence of ZnS buffer layer on different annealing temperature, analysed structural, surface topography, and optical properties of ZnS films by using X-ray diffraction (XRD), UV-spectroscopy measurements and scanning electronic microscope (SEM) analysis techniques. Findings showed that the film annealed at 300°C was uniformity and compact, which was zinc blende cubic structure. The film exhibited the optical transparency as high as 85% in the visible region, and its optical band gap was calculated to be 3.56 eV.

2014 ◽  
Vol 986-987 ◽  
pp. 47-50
Author(s):  
Jin Shang ◽  
Huan Ke ◽  
Shu Wang Duo ◽  
Ting Zhi Liu ◽  
Hao Zhang

ZnS thin films were deposited at three different radios of V(NH3·H2O)/V(N2H4) on glass substrates by chemical bath deposition (CBD) method without stirring the deposition bath during the deposition process. The structural and optical properties were analyzed by X-ray diffraction (XRD) and UV-VIS spectrophotometer. The results showed that ZnS thin film deposited at the radio of V(NH3·H2O)/V(N2H4)=15:15 is higher than that of the other two different solutions. With the radio of V(NH3·H2O)/V(N2H4) decreasing from 15:5 to 15:15, homogenous precipitation of Zn (OH)2easily forms in the bath, but ZnS precipitation first become suppressed and then easily forms in solution. It means that the concentration of OH-ion increases with the volume of N2H4increasing, which accelerates the formation of Zn (OH)2. However, when the volume of N2H4increases to 15mL, relatively high concentration of OH-ion not only accelerates the formation of Zn (OH)2, but also be used to the hydrolysis of thiourea. The average transmissions of all the ZnS films from three different solutions (V(NH3·H2O)/V(N2H4)=15:5, 15:10 and 15:15) are greater than 90% for wavelength values in visible region. The direct band gaps range from 3.80 to 4.0eV. The ZnS film deposited for 2.5h with the radio of V(NH3·H2O)/V(N2H4)=15:15 has the cubic structure only after single deposition.


2001 ◽  
Vol 15 (17n19) ◽  
pp. 769-773 ◽  
Author(s):  
M. GARCIA-ROCHA ◽  
A. CONDE-GALLARDO ◽  
I. HERNANDEZ-CALDERON ◽  
R. PALOMINO-MERINO

In this work we show the results on tile growth and optical characterization of TiO 2 thin films doped with Eu atoms. Eu:TiO2 films were grown at room temperature with different Eu concentrations by sol-gel on Si Corning glass substrates. A different crystalline structure is developed for the films deposited on Corning glass than those deposited on Si as observed from x-ray diffraction experiments. Room and low temperature photoluminescence (PL) was measured by using two different lines (325 and 442 nm) of a HeCd laser. A strong PL signal associated to the 5 D 0→7 F 2 transition from Eu +3 was observed. A better emission was obtained from those films deposited on Si substrates, Finally, the evolution of the PL signal is studied when the samples are annealed at different temperatures in O 2 atmosphere.


2009 ◽  
Vol 609 ◽  
pp. 243-247 ◽  
Author(s):  
H. Moualkia ◽  
S. Hariech ◽  
M.S. Aida

The present work deals with the preparation and characterization of cadmium sulfur (CdS) thin films. These films are prepared by chemical bath deposition on the well cleaned glass substrates. The thickness of the samples was measured by using profilometer DEKTAK, structural and optical properties were studied by X-ray diffraction analysis, and UV-visible spectrophotometry. The optical properties of the films have been investigated as a function of temperature. The band gap energy and Urbach energy were also investigated as a function of temperature. From the transmittance data analysis the direct band gap ranges from 2.21 eV to 2.34 eV. A dependence of band gap on temperature has been observed and the possible raisons are discussed. Transmission spectra indicates a high transmission coefficient (75 %). Structural analysis revealed that the films showed cubic structure, and the crystallite size decreased at a higher deposition temperature.


2013 ◽  
Vol 591 ◽  
pp. 297-300
Author(s):  
Huan Ke ◽  
Shu Wang Duo ◽  
Ting Zhi Liu ◽  
Hao Zhang ◽  
Xiao Yan Fei

ZnS films have been deposited on glass substrates by chemical bath deposition (CBD). The optical and structural properties were analyzed by UV-VIS spectrophotometer and X-ray diffraction (XRD). The results showed that the prepared thin films from the solution using N2H4 as second complexing agent were thicker than those from the solution without adding N2H4 in; this is due to using second complexing agent of N2H4, the deposition mechanisms change which is conductive to heterogeneous deposition. When using N2H4 as second complexing agent, the crystallinity of ZnS thin films improved with a significant peak at 2θ=28.96°which can be assigned to the (111) reflection of the sphalerite structure. The transmittances of the prepared films from the solution adding N2H4 in as second complexing agent were over 85%, compared to those from the solution without N2H4 (over 95%). The band gaps of the ZnS films from the solution using N2H4 as second complexing agent were larger (about 4.0eV) than that from those from the solution without N2H4 (about 3.98eV), which indicated that the prepared ZnS films from the solution adding N2H4 in as second complexing agent were better used as buffer layer of solar cells with adequate optical properties. In short, using N2H4 as second complexing agent, can greatly improve the optical and structural properties of the ZnS thin films.


2008 ◽  
Vol 15 (06) ◽  
pp. 821-827 ◽  
Author(s):  
Z. Q. BIAN ◽  
X. B. XU ◽  
J. B. CHU ◽  
Z. SUN ◽  
Y. W. CHEN ◽  
...  

An improved chemical bath deposition (CBD) technique has been provided to prepare zinc sulfide ( ZnS ) thin films on glass substrates deposited at 80–82°C using a mixed aqueous solution of zinc sulfate, ammonium sulfate, thiourea, hydrazine hydrate, and ammonia at the alkaline conditions. Both the traditional magnetic agitation and the substrates vibration by hand frequently were done simultaneously during the deposition. The substrates vibration reduced the formation and residence of gas bubbles on the glass substrates during growth and resulted in growth of clean ZnS thin films with high quality. Ammonia and hydrazine hydrate were used as complexing agents. It is found that hydrazine hydrate played an important role in growth of ZnS films. The structure and microstructure of ZnS films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and UV-vis spectroscopic methods. The XRD showed a hexagonal structure. The formed ZnS films exhibited good optical properties with high transmittance in the visible region and the band gap value was estimated to be 3.5–3.70 eV.


2013 ◽  
Vol 16 (1) ◽  
pp. 92-100
Author(s):  
Chien Mau Dang ◽  
Dam Duy Le ◽  
Tam Thi Thanh Nguyen ◽  
Dung Thi My Dang

In this study, we have successfully synthesized Fe3+ doped SiO2/TiO2 thin films on glass substrates using the sol-gel dip-coating method. After synthesizing, the samples were annealed at 5000C in the air for 1 hour. The characteristics and optical properties of Fe3+ doped SiO2/TiO2 films were then investigated by X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-vis) and Fourier transform infrared spectroscopy (FT-IR). An antifogging ability of the glass substrates coated with the fabricated film is investigated and explained by a water contact angle under visible-light. The analyzed results also show that the crystalline phase of TiO2 thin films comprised only the anatase TiO2, but the crystalline size decreased from 8.8 to 5.9 nm. We also observed that the absorption edge of Fe3+- doped SiO2/TiO2 thin films shifted towards longer wavelengths (i.e. red shifted) from 371.7nm to 409.2 nm when the Fe3+-doped concentration increased from 0 to 1 % mol.


2019 ◽  
Vol 37 (3) ◽  
pp. 317-323
Author(s):  
S.N. Vidhya ◽  
R.T. Karunakaran

AbstractCdS thin films with (1 1 1) orientation were prepared by chemical bath deposition technique at 80±5 °C using the reaction between NH4OH, CdCl2 and CS(NH2)2. The influence of annealing temperature varying from 150 °C to 250 °C was studied. X-ray diffraction studies revealed that the films are polycrystalline in nature with cubic structure. Various parameters, such as dislocation density, stress and strain, were also evaluated. SEM analysis indicated uniformly distributed nano-structured spherically shaped grains and net like morphology. Optical transmittance study showed the wide transmittance band and absence of absorption in the entire visible region. I-V characterization of p-Si/n-CdS diode and photoluminescence studies were also carried out for the CdS films.


Coatings ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 107 ◽  
Author(s):  
San-Ho Wang ◽  
Sheng-Rui Jian ◽  
Guo-Ju Chen ◽  
Huy-Zu Cheng ◽  
Jenh-Yih Juang

The effects of annealing temperature on the structural, surface morphological and nanomechanical properties of Cu-doped (Cu-10 at %) NiO thin films grown on glass substrates by radio-frequency magnetron sputtering are investigated in this study. The X-ray diffraction (XRD) results indicated that the as-deposited Cu-doped NiO (CNO) thin films predominantly consisted of highly defective (200)-oriented grains, as revealed by the broadened diffraction peaks. Progressively increasing the annealing temperature from 300 to 500 °C appeared to drive the films into a more equiaxed polycrystalline structure with enhanced film crystallinity, as manifested by the increased intensities and narrower peak widths of (111), (200) and even (220) diffraction peaks. The changes in the film microstructure appeared to result in significant effects on the surface energy, in particular the wettability of the films as revealed by the X-ray photoelectron spectroscopy and the contact angle of the water droplets on the film surface. The nanoindentation tests further revealed that both the hardness and Young’s modulus of the CNO thin films increased with the annealing temperature, suggesting that the strain state and/or grain boundaries may have played a prominent role in determining the film’s nanomechanical characterizations.


2011 ◽  
Vol 685 ◽  
pp. 105-109 ◽  
Author(s):  
Ji Li ◽  
Zhong Wei Zhang ◽  
Yang Ou ◽  
Wei Feng Liu ◽  
Guo Shun Jiang ◽  
...  

Cu2ZnSnSe4thin films were prepared by selenization of electrodeposited Cu-Zn-Sn precursors. The Cu-Zn-Sn precursors were electrodeposited on the Mo-coated glass substrates from an electrolyte containing copper sulfate, zinc sulfate, tin (II) sulfate at a fixed potential between -1.2V and -1.25V vs. saturated calomel electrode, then the Cu2ZnSnSe4thin films were obtained by selenizing Cu-Zn-Sn precursors in elemental selenium atmosphere at different temperatures. The structure, composition and optical properties of the films were investigated by X-ray diffraction, Energy dispersive spectrometry and UV-VIS absorption spectroscopy. The CZTSe films have a stannite structure and an optical band-gap about 1.6 eV which is suitable for fabricating solar cells.


2022 ◽  
Vol 1048 ◽  
pp. 158-163
Author(s):  
Mekala Lavanya ◽  
Srirangam Sunita Ratnam ◽  
Thota Subba Rao

Ti doped Cu2O thin films were prepared at distinct Argon/Oxygen gas flow ratio of 34/1, 33/2,32/3 and 31/4 with net flow (Ar+O2) of 35 sccm by using DC magnetron sputtering system on glass substrates at room temperature. The gas mixture influence on the film properties studied by using X-ray diffraction, Field emission scanning electron microscopy and UV-Visible spectroscopy. From XRD results, it is evident that, with a decrease in oxygen content, the amplitude of (111) peak increased, peak at a 35.67o scattering angle and the films shows a simple cubic structure. The FESEM images indicated the granularity of thin films was distributed uniformly in a homogenous model and also includes especially pores and cracks. The film deposited at 31/4 showed a 98% higher transmittance in the visible region.


Sign in / Sign up

Export Citation Format

Share Document