Study on an EV Traction Control Strategy

2011 ◽  
Vol 141 ◽  
pp. 605-610
Author(s):  
Shi Rong Yan ◽  
Shi Zhong Li

According to an electrical vehicle (EV) construction and working principle, a dynamic model governing its motion was established. A built-in permanent magnet synchronous motor was selected as its driving motor and a mathematical model about the motor working principle was described also. To get good motion effect, a motor driving control system with a current loop and a speed loop was developed. The current loop consists of maximum torque per ampere control and field weakening control. The speed loop is based on a sliding mode control. To make the EV working more smooth, stable and safer, its traction control includes driving motor control and wheel braking control. During some acceleration or cornering, wheel braking control is introduced to keep driving wheels in good slip states, especially to make the car in a good stable and safe state. Simulation study based on MATLAB/Simulink showed the control strategy developed here can make the EV work well, even when it runs on some asymmetric road.

2012 ◽  
Vol 220-223 ◽  
pp. 1034-1039
Author(s):  
Shi Rong Yan ◽  
Zhen Hai Su ◽  
Shi Zhong Li

Two different car traction control methods were studied and some dynamic characteristics were found. Firstly, a new electric rear driving car with two DC motors driving independently is controlled by a combined system. The combined system consists of a feed-forward control, a feedback control and a SRC. Secondly, a built-in permanent magnet synchronous motor is selected as its driving motor. A motor driving system with a current loop and a speed loop was developed. The current loop consists of maximum torque per ampere control and field weakening control. Some simulation work was done based on MATLAB/Simulink software. The simulation study showed the control system can make the electric vehicle work well.


2011 ◽  
Vol 317-319 ◽  
pp. 643-648
Author(s):  
Shi Rong Yan ◽  
Shi Zhong Li

According to electrical vehicle (EV) working requirements, a built-in permanent magnet (IPM) synchronous motor is selected as the topic motor. A mathematical model about the motor is described here. To make the EV run smoothly, safely and economically, two control loops for the electric motor are developed. One is based on motor current control, which consists of maximum torque per ampere control and field weakening control. Other is motor speed control loop, in which a sliding mode control (called a variable speed exponential reaching law) is used. Through simulation study, the control scheme developed here can make the motor work well, which means it can be used in some EV driving systems.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1292
Author(s):  
Hanying Gao ◽  
Guoqiang Zhang ◽  
Wenxue Wang ◽  
Xuechen Liu

The six-phase motor control system has low torque ripple, low harmonic content, and high reliability; therefore, it is suitable for electric vehicles, aerospace, and other applications requiring high power output and reliability. This study presents a superior sensorless control system for a six-phase permanent magnet synchronous motor (PMSM). The mathematical model of a PMSM in a stationary coordinate system is presented. The information of motor speed and position is obtained by using a sliding mode observer (SMO). As torque ripple and harmonic components affect the back electromotive force (BEMF) estimated value through the traditional SMO, the function of the frequency-variable tracker of the stator current (FVTSC) is used instead of the traditional switching function. By improving the SMO method, the BEMF is estimated independently, and its precision is maintained under startup or variable-speed states. In order to improve the estimation accuracy and resistance ability of the observer, the rotor position error was taken as the disturbance term, and the third-order extended state observer (ESO) was constructed to estimate the rotational speed and rotor position through the motor mechanical motion equation. Finally, the effectiveness of the method is verified by simulation and experiment results. The proposed control strategy can effectively improve the dynamic and static performance of PMSM.


2019 ◽  
Vol 140 ◽  
pp. 10006
Author(s):  
Aleksandr Lutonin ◽  
Andrey Shklyarskiy ◽  
Yaroslav Shklyarskiy

This paper represents control strategy of anisotropic permanent magnet synchronous motor (IPMSM) in the field-weakening region. Field weakening controller allows to increase maximum achievable speed with output torque reduction. Proposed control system consists of four general modes: MTPA (maximum torque per ampere), MC (maximum current), FW (field weakening), and MTPV (maximum torque per voltage) which must be chosen accordingly to motor speed, current and torque references. Operation point is found as an intersection of torque hyperbola and voltage ellipse curves in d-q motor’s current reference frame involving motor parameters’ limits. However, due to nonlinear dependence between torque and voltage equations, it is quite complicated to obtain both right control mode selection and reference output calculation. In order to solve this problem, a unified control algorithm adopted for wide speed and torque reference with online constraints calculation is proposed. Matlab/Simulink control model of PMSM motor and control system were designed in order to show developed strategy performance. Simulation results shows increasing of speed limit by more than 2.5 times related to nominal speed with high controller’s response. However, speed limit increasing leads to a decrease in motor’s output torque. Due to this fact, presented control strategy is not suitable for applications where nominal torque level is essential for all speed operation points.


2013 ◽  
Vol 347-350 ◽  
pp. 753-757
Author(s):  
Li Zhou ◽  
Lu Xiong ◽  
Zhuo Ping Yu

This paper proposes a wheel slip control strategy for 4WD Electrical Vehicle with In-wheel Motors. In the first part of this paper, a brief introduction of sliding mode control for acceleration slip regulation is given. Consider that its control effect varies with road conditions, another algorithm which can automatically adapt to different roads is designed. This method takes advantage of the peculiarity of the longitudinal static tire force curve and regulates wheel slip ratio to the detected optimal value, aiming to maximize the traction force while preserving sufficient lateral tire force. Simulation results show that the slip rate can be regulated to a value around the optimal slip ratio, and the driving torque is very close to the maximum transmissible torque. The control strategy achieves stronger stability, shorter driving distance and hence better control performance.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Xiang Lu ◽  
Yunxiang Xie ◽  
Li Chen

Aiming at the nonlinear characteristics of VIENNA rectifier and using differential geometry theory, a dual closed-loop control strategy is proposed, that is, outer voltage loop using sliding mode control strategy and inner current loop using feedback linearization control strategy. On the basis of establishing the nonlinear mathematical model of VIENNA rectifier ind-qsynchronous rotating coordinate system, an affine nonlinear model of VIENNA rectifier is established. The theory of feedback linearization is utilized to linearize the inner current loop so as to realize thed-qaxis variable decoupling. The control law of outer voltage loop is deduced by utilizing sliding mode control and index reaching law. In order to verify the feasibility of the proposed control strategy, simulation model is built in simulation platform of Matlab/Simulink. Simulation results verify the validity of the proposed control strategy, and the controller has a strong robustness in the case of parameter variations or load disturbances.


2020 ◽  
Vol 39 (2) ◽  
pp. 127-143
Author(s):  
Francis Mwasilu

A direct speed control of salient permanent magnet synchronous motor (PMSM) drives in constant torque and constant power regimes for electric vehicles applications is presented. The proposed speed control scheme is derived from model predictive control approach where both rotor speed and stator current are formulated in a single objective function that is periodically computed to attain the PMSM drive optimum switching states. The dynamic model of the PMSM intrinsically encompasses the unknown disturbance, which should be rejected for high-performance speed control especially in transient conditions. Consequently, the extended modified augmented state Kalman filter (ASKF) is incorporated in the proposed scheme to enhance the transient performance of the salient PMSM drive. Finally, the proposed speed control strategy reveals a fast-transient speed response when compared to the conventional dual current loop PI-based speed controller over extended speed range and load torque variations. The computer simulation conducted using MATLAB/Simulink and experimental results obtained using PMSM laboratory prototype are presented considering constant torque and constant power regions to confirm the efficacy of the proposed speed control strategy.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Changlin Zhu ◽  
Qunzhang Tu ◽  
Chengming Jiang ◽  
Ming Pan ◽  
Hao Huang ◽  
...  

In view of the shortcomings of the existing multimotor synchronous control strategy, a new method of mean deviation coupling control for multimotor system via global fast terminal sliding mode control is proposed. Firstly, the mathematical model of permanent magnet synchronous motor (PMSM) under a d - q reference frame is established. Next, based on the deviation coupling control, the deviation is calculated by the average speed, and the structure of the deviation coupling control strategy is optimized. The speed controller of the multimotor system is designed based on the global fast terminal sliding mode control (GFTSMC) algorithm to improve the synchronization accuracy of the system. In addition, a load torque Luenberger observer is designed to observe the load in real time. Then, the stability analysis of the controller is carried out by using the Lyapunov function. Finally, a four-motor experimental platform is built to verify the effectiveness of the proposed control strategy.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3116 ◽  
Author(s):  
Jianfei Zhao ◽  
Minqi Hua ◽  
Tingzhang Liu

In this paper, a sliding mode vector control system based on collaborative optimization of an axial flux permanent magnet synchronous motor (AFPMSM) for an electric vehicle is proposed. In order to increase the high efficiency range of electric vehicles and improve the cruising range, a collaborative optimization control strategy is firstly proposed. Due to the use of a dual stator-single rotor AFPMSM, the multi-motor efficiency optimization map and torque cooperative control are used to realize the working mode conversion of single stator and double stator, and the torque ripple caused by the working mode conversion is improved by fuzzy control. In order to improve the torque tracking capability, speed limiting characteristics, and operating characteristics, a speed limit and current vector control strategy based on a sliding mode controller is proposed and studied. The dynamic performance of electric vehicles is improved by a sliding mode vector control. Finally, a drive control system was developed for the proposed control strategy, and the complete vehicle test was carried out. The collaborative optimization control experiment and torque tracking and speed limiting experiments verify the correctness and effectiveness of the proposed control strategy. The acceleration performance and endurance experiments show that the proposed control strategy can effectively improve the cruising range and the acceleration performance of electric vehicles.


Sign in / Sign up

Export Citation Format

Share Document