Research on Friction Disk’s Surface Temperature Distribution and Oil Groove Configuration in Wet Friction Clutch

2011 ◽  
Vol 148-149 ◽  
pp. 1218-1222
Author(s):  
Yun Hai Jia

Multi-plate wet friction clutch is one of key components of duty truck hydrodynamic-mechanical transmission. Super-heated burn and warping deformation are main invalidation forms of wet friction clutch. It is one of effectual methods to augment friction coefficient and prolong natural life of wet friction clutch that friction disks’ surface temperature and radial temperature are reduced. Compute method of friction disk surface temperature is obtained using theory analysis and confirmed correctness using finite element analysis. It is salience character of wet friction clutch that there are some oil grooves in friction disk surface. These oil grooves can increase friction coefficient and emanate heat quantity. Confirming conformable friction disk’s surface oil groove configuration by experiment research is received. It confirmed that the appropriate surface oil groove configuration of friction disk should be double-arc groove.

Author(s):  
Constantine M. Tarawneh ◽  
Arturo A. Fuentes ◽  
Javier A. Kypuros ◽  
Lariza A. Navarro ◽  
Andrei G. Vaipan ◽  
...  

In the railroad industry, distressed bearings in service are primarily identified using wayside hot-box detectors (HBDs). Current technology has expanded the role of these detectors to monitor bearings that appear to “warm trend” relative to the average temperatures of the remainder of bearings on the train. Several bearings set-out for trending and classified as nonverified, meaning no discernible damage, revealed that a common feature was discoloration of rollers within a cone (inner race) assembly. Subsequent laboratory experiments were performed to determine a minimum temperature and environment necessary to reproduce these discolorations and concluded that the discoloration is most likely due to roller temperatures greater than 232 °C (450 °F) for periods of at least 4 h. The latter finding sparked several discussions and speculations in the railroad industry as to whether it is possible to have rollers reaching such elevated temperatures without heating the bearing cup (outer race) to a temperature significant enough to trigger the HBDs. With this motivation, and based on previous experimental and analytical work, a thermal finite element analysis (FEA) of a railroad bearing pressed onto an axle was conducted using ALGOR 20.3™. The finite element (FE) model was used to simulate different heating scenarios with the purpose of obtaining the temperatures of internal components of the bearing assembly, as well as the heat generation rates and the bearing cup surface temperature. The results showed that, even though some rollers can reach unsafe operating temperatures, the bearing cup surface temperature does not exhibit levels that would trigger HBD alarms.


2014 ◽  
Vol 614 ◽  
pp. 12-15
Author(s):  
Yu Fei Liu ◽  
Xiu Chao Bai ◽  
Xin Li ◽  
Yong Liang Lei

The heating in the running-in process of wet friction clutch is the key to research in this kind of products. In this paper, based on the shifting clutch composed of metal and paper-based friction liner, using MATLAB/SIMULINK software, the simulation model of friction clutch and the analysis model of conducting heat were established. Thus, the corresponding relationships were obtained, which were the total friction power and clutch temperature variation with the time during the running-in process. According to the simulation results, the main influencing factors on temperature control of wet friction clutch were analyzed during running-in process, and the results could provide reference for reasonable temperature rise control for the clutch.


Author(s):  
E. M. Evans ◽  
J. Whittle

This paper is intended to demonstrate that designers of wet clutches for power transmission can obtain the optimum friction characteristics for specific applications by considering the interaction between friction materials and lubricants. A friction clutch plate rig is described and the friction results obtained are presented. It is shown that a wide variation of coefficients of friction and frictional characteristics in wet friction clutches can be obtained by changing the oils and friction materials. In particular the coefficient of friction is dependent upon (1) the oil, (2) the materials of the sliding surfaces, (3) sliding speed, and (4) temperature. It is also shown that the coefficient of friction is affected by ( a) refining treatment given to the oil, ( b) different base oils, and ( c) additives.


2007 ◽  
Vol 539-543 ◽  
pp. 2651-2656 ◽  
Author(s):  
C.J. Huang ◽  
E. Ghassemieh

A 3-D coupled temperature-displacement finite element analysis is performed to study an ultrasonic consolidation process. Results show that ultrasonic wave is effective in causing deformation in aluminum foils. Ultrasonic vibration leads to an oscillating stress field. The oscillation of stress in substrate lags behind the ultrasonic vibration by about 0.1 cycle of ultrasonic wave. The upper foil, which is in contact with the substrate, has the most severe deformation. The substrate undergoes little deformation. Apparent material softening by ultrasonic wave, which is of great concern for decades, is successfully simulated. The higher the friction coefficient, the more obvious the apparent material softening effect.


Author(s):  
V. E Zinoviev ◽  

For the third variant of the adaptive friction clutch with a separate force closure, the boundaries of the change in the value of the feedback gain are determined, within which the clutch has the highest accuracy of operation, if its load characteristic is realized in the form of a curve monotonically increasing in the range of the friction coefficient values. A variant of separate power closure is developed, which provides for the introduction of an additional spring into the clutch design in the closure node of the thorn pairs of the main friction group.


Author(s):  
S. Baldauf ◽  
A. Schulz ◽  
S. Wittig

Local adiabatic film cooling effectiveness on a flat plate surface downstream a row of cylindrical holes was investigated. Geometrical parameters like blowing angle and hole pitch as well as the flow parameters blowing rate and density ratio were varied in a wide range emphasizing on engine relevant conditions. An IR-thermography technique was used to perform local measurements of the surface temperature field. A spatial resolution of up to 7 data points per hole diameter extending up to 80 hole diameters downstream of the ejection location was achieved. Since all technical surface materials have a finite thermoconductivity, no ideal adiabatic conditions could be established. Therefore, a procedure for correcting the measured surface temperature data based on a Finite Element analysis was developed. Heat loss over the backside of the testplate and remnant heat flux within the testplate in lateral and streamwise direction were taken into account. The local effectiveness patterns obtained are systematically analyzed to quantify the influence of the various parameters. As a result, a detailed description of the characteristics of local adiabatic film cooling effectiveness is given. Furthermore, the locally resolved experimental results can serve as a data base for the validation of CFD-codes predicting discrete hole film cooling.


2020 ◽  
Vol 12 (9) ◽  
pp. 168781402095779
Author(s):  
He Pan ◽  
Yang Zhang

When light alloys used in coal mine, the sparks generated by mechanical friction and impacts are the main effective ignition source. While the hot surfaces are concomitant in friction process, prior to the occurrence of mechanical sparks, whether the hot surfaces will be an effective ignition source. Then this paper focuses on the development of hot surfaces generated by TC4 titanium alloy at the low friction velocities. Experiments and finite element simulation methods were used together to describe the temperature field of TC4 titanium alloy. It was found that the temperature of hot surfaces increased with the load and increased much faster at higher relative speed. By means of regression analysis, the variation law of friction coefficient and contact pressure with loads and the variation law of hot surface temperature with friction coefficient and pressure were studied, then the fitting curve of hot surface temperature was obtained. The results of calculations and experiments indicate that hot surfaces generated by light alloy was possible to be an effective ignition source for methane air mixture in coal mine.


2015 ◽  
Vol 642 ◽  
pp. 231-235
Author(s):  
Che Hung Wei ◽  
Jui Feng Yang ◽  
Chao I Wang

Diamond-like carbon (DLC) films is useful in many applications. To improve the tribological properties in DLC, we spin coat the multi-walled carbon nanotubes (CNTs) with different solution on (100) silicon. DLC was deposited by plasma enhanced chemical vapor deposition (PECVD) with C2H2and H2. The results show that the ID/IGratio is increasing with higher CNTs content while the friction coefficient and critical load are decreasing with larger CNTs contents. The decreasing friction coefficient results from graphitation on the surface due to higher sp2content. The decreasing critical load is attributed to higher internal stress. The effect of friction coefficient and CNT concentration on stress distribution is studied by a nanoscratch finite element analysis. The results indicate that low friction coefficient and high CNT concentration will reduce the stress magnitude in the film. Therefore, the decreasing friction coefficient in CNT doped DLC film with increasing CNT concentration should reduce stress in the film and is good for adhesion. The discrepancy between friction coefficient and critical load is explained in terms of high internal stress during deposition. A surface treatment on CNT before deposition to reduce internal stress is currently under investigation.


2012 ◽  
Vol 232 ◽  
pp. 930-934 ◽  
Author(s):  
Shann Chyi Mou ◽  
Li Hui Yang ◽  
Ying Hao Chen

This article is meant to perform the simulation behavior of fluctuation and vibration for the ANSYS software against piezoelectric structure. From the relevant analysis, it can be aimed to devise the single-axis ultrasonic sliding platform inclusive of propeller system and sliding mechanism. Within both systems of propeller system and sliding mechanism, they are adopted with the piezoelectric buzzer as the material for driving components. The propeller actuator (propeller system), on the Ni-alloy plate of buzzer, will be divided to the non-axisymmetric structure at the respective angles of 90º, 120º and 150º with the resultantly produced radial vibration to move the platform. Also, the sliding vibrator (sliding mechanism) will be evenly divided into 3 parts of axisymmetric structure at the angle of 120º with its longitudinal vibration to reduce the friction caused by platform movement. In the designing process, it is adopted with the finite element analysis software - ANSYS to perform analysis and simulation for the vibration patterns of actuator and vibrator. By measuring the friction coefficient of sliding platform, it is well verified that the introduction of sliding mechanism will certainly reduce the friction caused by platform movement. The static friction coefficient will be reduced from 0.37 to 0.2 to result in considerably increasing displacement speed of platform.


2019 ◽  
Vol 943 ◽  
pp. 43-47
Author(s):  
Xia Zhu ◽  
Keiji Ogi ◽  
Nagatoshi Okabe

The purpose of this research is to determine the state inside the material using finite-element analysis and to improve the performance of a rotary-draw bending forming by clarifying the mechanism of wrinkle generation. An analytical model of rotational drawing was made by using the general-purpose nonlinear finite-element analysis software MSC Marc, and the analytical results were compared with experimental results to verify the validity of the model. Furthermore, the mechanism of wrinkle generation was investigated. With the progress of processing, wrinkles occur not in the R part but in the original tube-side straight-tube part. The coefficient of friction between the tube material and the R portion of the bending mold promotes the occurrence of wrinkles and the growth of the generated wrinkles. Because wrinkles occur even if the friction coefficient between the tube material and bending mold R part is ignored, the generation condition of wrinkles also depends on parameters other than the friction coefficient.


Sign in / Sign up

Export Citation Format

Share Document