Numerical Design and Analysis of a Certain White Bodywork

2009 ◽  
Vol 16-19 ◽  
pp. 110-114
Author(s):  
Ying Yang ◽  
Yu Sheng Li ◽  
Fan Liang Meng

Develops a finite element model to analyze the dynamic/static sensitivities of a certain white bodywork, i.e., the sensitivities of its bodywork’s natural frequency, torsional stiffness and flexural rigidity and mass to the thickness of sheet to make the bodywork, thus finding out the main parts affecting greatly the dynamic and static characteristics of bodywork to optimize its structure design. According to the sizes of contribution the body mass will make to the natural frequency and torsional stiffness and flexural rigidity, an optimal conceptual design is given. This method provides an important reference for improving the dynamic performance of bodywork, lightening its weight and optimizing its design.

2012 ◽  
Vol 468-471 ◽  
pp. 238-244
Author(s):  
Zhao Wang ◽  
Zhi Jin Zhou ◽  
Hao Lu ◽  
Ze Jun Wen ◽  
Yi Min Xia

Using finite element software ADINA, three coupling models on fluid-structure interaction among internal fluid—pipe—external fluid in the lifting pipeline were researched. Firstly, coupling finite element model on fluid structure interaction of lifting pipeline was established and the first sixth order natural frequencies and principal vibration modes were attained at different ore conveying volume concentration and cross-section size of pipeline;Then natural frequencies of three couplings were compared with two couplings and no coupling according to the above condition, and FSI effect on natural frequency of pipeline was discussed. The calculation results were shown that the natural frequency of the pipe and its relative error reduced with the volume concentration and the relative wall thickness increased, which explain the reason that has better accuracy considering three couplings than other .These results have certain directive significance on the dynamic response, structure design and study of reduction vibration of lifting pipeline.


2019 ◽  
Vol 2019 (6) ◽  
pp. 69-76
Author(s):  
Светлана Ашуркова ◽  
Svetlana Ashurkova ◽  
Дмитрий Антипин ◽  
Dmitriy Antipin

As a method of investigations there is adopted a computer mathematical modeling based on the use of a finite element method. The choice of a type and perforation parameters is connected with the problem in the large array creation of bearing structure design models of passenger car bodies. The analysis of investigations carried out in the field of multi-variation computations has shown that the most efficient investigation method is a superelement reduction. Its use allows decreasing labor and time costs for the body design model development at the expense of the initial super-element with the perforation area for a new one. The appraisal of the procedure offered on the choice of a body efficient bearing structure with the perforated profiles is carried out by the example of the body of a domestic passenger car according to the criteria of strength and assurance of the highest weight reduction of a bearing structure. In the first stage of the work there are defined types and parameters of perforation possible for use in the structure. Finite element design models of car bodies are developed. On the basis of strength computation results the reinforcing elements of the structure are offered which have a margin safety for perforation application in them. Based on the analysis of car body bearing structure there is carried out a choice of an efficient unit of a finite element model which will be used as a super-element. In the next stage of the work there are developed and computed structures of car bodies with the perforation types under consideration and with the use of superelements. The computation results have shown that maximum design stresses of car bodies for all perforation types under consideration do not exceed legitimate values. As an efficient bearing structure of a passenger car body there is adopted a car body with the sixth type of perforation ensuring the largest decrease of structure metal intensity and satisfying strength requirements. The procedure developed can be used at designing modern bearing structures of passenger car bodies having improved technical and economic values.


2012 ◽  
Vol 479-481 ◽  
pp. 1442-1445
Author(s):  
Xian Zhao Jia ◽  
Yong Jian Yu ◽  
Hong Bin Liu

This paper establishes the finite element model of main spindle in the test rig for high-speed railway bearing. Utilizing the finite element analysis software ANSYS, the modal analysis for spindle is carried on. Preliminary determination is that spindle resonance occurs. Structural optimization is carried out by increasing first natural frequency and reducing weight of main spindle in order to avoid resonance. The results showed that the position of support bearings is determined. The first natural frequency is increased by reducing spindle weight. The dynamic performance of the spindle is improved, avoiding the resonance region effectively.


1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


2013 ◽  
Vol 281 ◽  
pp. 165-169 ◽  
Author(s):  
Xiang Lei Zhang ◽  
Bin Yao ◽  
Wen Chang Zhao ◽  
Ou Yang Kun ◽  
Bo Shi Yao

Establish the finite element model for high precision grinding machine which takes joint surface into consideration and then carrys out the static and dynamic analysis of the grinder. After the static analysis, modal analysis and harmonic response analysis, the displacement deformation, stress, natural frequency and vibration mode could be found, which also helps find the weak links out. The improvement scheme which aims to increase the stiffness and precision of the whole machine has proposed to efficiently optimize the grinder. And the first natural frequency of the optimized grinder has increased by 68.19%.


2011 ◽  
Vol 346 ◽  
pp. 379-384
Author(s):  
Shu Bo Xu ◽  
Yang Xi ◽  
Cai Nian Jing ◽  
Ke Ke Sun

The use of finite element theory and modal analysis theory, the structure of the machine static and dynamic performance analysis and prediction using optimal design method for optimization, the new machine to improve job performance, improve processing accuracy, shorten the development cycle and enhance the competitiveness of products is very important. Selected for three-dimensional CAD modeling software-UG NX4.0 and finite element analysis software-ANSYS to set up the structure of the beam finite element model, and then post on the overall structure of the static and dynamic characteristic analysis, on the basis of optimized static and dynamic performance is more superior double wall structure of the beam. And by changing the wall thickness and the thickness of the inner wall, as well as the reinforcement plate thickness overall sensitivity analysis shows that changes in these three parameters on the dynamic characteristics of post impact. Application of topology optimization methods, determine the optimal structure of the beam ultimately.


1999 ◽  
Author(s):  
S. A. Lipsey ◽  
Y. W. Kwon

Abstract Damage reduces the flexural stiffness of a structure, thereby altering its dynamic response, specifically the natural frequency, damping values, and the mode shapes associated with each natural frequency. Considerable effort has been put into obtaining a correlation between the changes in these parameters and the location and amount of the damage in beam structures. Most numerical research employed elements with reduced beam dimensions or material properties such as modulus of elasticity to simulate damage in the beam. This approach to damage simulation neglects the non-linear effect that a crack has on the different modes of vibration and their corresponding natural frequencies. In this paper, finite element modeling techniques are utilized to directly represent an embedded crack. The results of the dynamic analysis are then compared to the results of the dynamic analysis of the reduced modulus finite element model. Different modal parameters including both mode shape displacement and mode shape curvature are investigated to determine the most sensitive indicator of damage and its location.


2012 ◽  
Vol 538-541 ◽  
pp. 3137-3144 ◽  
Author(s):  
Wen Wei Wang ◽  
Cheng Jun Zhou ◽  
Cheng Lin ◽  
Jiao Yang Chen

The finite-element model of pure electric bus has been built and the free model analysis, displacement and stress analysis under bending condition and torsion condition have been conducted. Optimally design the pure electric bus frame based on multiple constrains. Reduce the body frame quality by 4.3% and meanwhile meet the modal and stress requirements.


2013 ◽  
Vol 579-580 ◽  
pp. 507-511
Author(s):  
Yi Xiang Liu ◽  
Yong Mei Wang

This paper firstly starting mechanism of vibration and noise from gear, gear noise mechanism is explained, and analyze the factors and the impact of noise on the gear reducer. Secondly, the establishment of a complete solid model of gear reducer and reducer model for finite element model, the reduction gear box gear reducer of modal analysis and finite element modal calculation, and points out the dynamic analysis of structure, size and weight factor is proportional to the reciprocal of the modal frequencies of each mode is the with the frequency is low, that is, the greater the weight. Once again, the main measure of load and control of gear noise of gear is analyzed, including the calculation, for exciting force reduction gear reducer gear load computation. The analysis and calculation are the theoretical basis of gear structure design and its performance evaluation.


2021 ◽  
Vol 12 (1) ◽  
pp. 689-700
Author(s):  
Ao Lei ◽  
Chuan-Xue Song ◽  
Yu-Long Lei ◽  
Yao Fu

Abstract. To make vehicles more reliable and efficient, many researchers have tried to improve the rotor performance. Although certain achievements have been made, the previous finite element model did not reflect the historical process of the motor rotor well, and the rigidity and mass in rotor optimization are less discussed together. This paper firstly introduces fractional order into a finite element model to conduct the harmonic response analysis. Then, we propose an optimal design framework of a rotor. In the framework, objective functions of rigidity and mass are defined, and the relationship between high rigidity and the first-order frequency is discussed. In order to find the optimal values, an accelerated optimization method based on response surface (ARSO) is proposed to find the suitable design parameters of rigidity and mass. Because the higher rigidity can be transformed into the first-order natural frequency by objective function, this paper analyzes the first-order frequency and mass of a motor rotor in the experiment. The results proved that not only is the fractional model effective, but also the ARSO can optimize the rotor structure. The first-order natural frequency of asynchronous motor rotor is increased by 11.2 %, and the mass is reduced by 13.8 %, which can realize high stiffness and light mass of asynchronous motor rotors.


Sign in / Sign up

Export Citation Format

Share Document