scholarly journals Studi Ketahanan Benturan pada Komposit Serat Rami-epoksi dan Polimer Blend ABS-PP untuk Aplikasi Bahan Alternatif Soket Prostesis

2018 ◽  
Vol 2 (3) ◽  
pp. 45
Author(s):  
Fadli Robiandi ◽  
Menasita Menasita ◽  
Ikal M

Fabrication of rami fiber based on composite with epoxy matrixs and polymer blend of ABS-PP for alternative prosthetic soket application have been conducted. This research attemp to analyze impact resistance of rami-epoxy based on composite and polymer blend base ABS-PP. Those sample was made by hand lay up and simple hot casting methode at a temperature of 250 oC. rami-epoxy based on composite and polymer blend samples with volume fraction variation 0%, 25%, 50% and 75%. The result of charpy impact test showed an increase in impact energy along with an increase in the volume fraction of rami. In other hand, an increase in ABS volume fraction could reduce the impact energy of polymer blend samples. From impact testing result, both samples showed brittle like-structure. Broken Fiber with low fiber pull out mechanism was found out in rami-epoxy composite samples. Polymer blend samples showed pull out mechanism on ABS grain.

2014 ◽  
Vol 775-776 ◽  
pp. 296-301 ◽  
Author(s):  
Anderson de Paula Barbosa ◽  
Michel Picanço Oliveira ◽  
Giulio Rodrigues Altoé ◽  
Frederico Muylaert Margem ◽  
Sergio Neves Monteiro

The buriti (Muritia flexuosa) fiber are among the lignocellulosic fibers with apotential to be used as reinforcement of polymer composites. In recent years, the buriti fiber has been characterized for its properties as an engineering natural material. The toughness of buriti composites remains to be a evaluated. Therefore, the present work evaluated the toughness of epoxy composites reinforced with different amounts of buriti fibers by means of Charpy impact tests. It was found a significant increase in the impact resistance with the volume fraction of buriti fibers. Fracture observations by scanning electron microscopy revealed the mechanism responsible for this toughness behavior.


2014 ◽  
Vol 59 (3) ◽  
pp. 1103-1106
Author(s):  
B. Kalandyk ◽  
R. Zapała ◽  
Ł. Boroń ◽  
M. Solecka

Abstract Studies described in this paper relate to common grades of cast corrosion resistant Cr-Ni steel with different matrix. The test materials were subjected to heat treatment, which consisted in the solution annealing at 1060°C followed by cooling in water. The conducted investigations, besides the microstructural characteristics of selected cast steel grades, included the evaluation of hardness, toughness (at a temperature of -40 and +20oC) and type of fracture obtained after breaking the specimens on a Charpy impact testing machine. Based on the results of the measured volume fraction of ferrite, it has been found that the content of this phase in cast austenitic steel is 1.9%, while in the two-phase ferritic-austenitic grades it ranges from 50 to 58%. It has been demonstrated that within the scope of conducted studies, the cast steel of an austenitic structure is characterised by higher impact strength than the two-phase ferritic-austenitic (F-A) grade. The changing appearance of the fractures of the specimens reflected the impact strength values obtained in the tested materials. Fractures of the cast austenitic Cr-Ni steel obtained in these studies were of a ductile character, while fractures of the cast ferritic-austenitic grade were mostly of a mixed character with the predominance of brittle phase and well visible cleavage planes.


2012 ◽  
Vol 174-177 ◽  
pp. 1030-1033 ◽  
Author(s):  
Guo Tao Cui ◽  
Zuo Cheng Wang ◽  
Tao Sun ◽  
Wei Min Guo ◽  
Jun Qing Gao

In this research, trace boron (4ppm, 8ppm, 11ppm) was added into the Nb-added HSLA H-beams. The impact toughness of H-beams with/without boron was examined by Charpy impact test (V-notch). The morphologies of the microstructure and the fracture surfaces of the impact specimens were observed by metalloscope, stereomicroscope and electron probe. The experimental results prove that the absorbed impact energy at -40°C for the 4ppm, 8ppm, 11ppm boron-added steels respectively reaches up to 80J, 126J, 85J from 15J and H-beams with boron have a lower FATT than that without boron. It is also found that the total oxygen content affects the absorbed impact energy to a certain extent. It is discovered by transmission electron microscope (TEM) that boron mainly exists in solid solution state, except that a little amount of Fe23(C, B)6is formed at the grain boundaries, and the distribution of Nb(C, N) is also influenced by boron addition.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Wei Wang ◽  
Ping Wang ◽  
Xuesong Liu ◽  
Zhibo Dong ◽  
Hongyuan Fang

Firstly, by analyzing the response of Charpy V-notch specimen impacted by pendulum, the relationship between specimen geometry, material properties, and impact energy is established and simplified, and the mathematical model for evaluating impact energy of specimens with different sizes is established. Then, the effectiveness of the model through a series of impact tests is verified. Theoretical analysis and experimental results show that the relationship between ligament length and impact energy is quadratic, while the relationship between ligament thickness and impact energy is linear. In the derivation process, the intrinsic impact toughness is used to evaluate the toughness of materials. The mathematical model makes it possible to evaluate the impact energy of specimens with different sizes and provides a theoretical basis for evaluating the impact resistance of structures.


2012 ◽  
Vol 51 (No. 3) ◽  
pp. 85-90
Author(s):  
R. Chotěborský ◽  
D. Herák ◽  
V. Bezouška ◽  
P. Hrabě ◽  
M. Müller

Toughness is one of important material properties. At present steel is still the most used material. Owing to the temperature this material can fail both brittly and ductily. Therefore we look for the temperature above which the material will failur ductily. The Charpy impact test is one of methods how to determine the ductility by the temperature – transition access in the determined temperature range. The measured data file is large and it requires the interlay by a curve which presents the relation between the impact energy and the temperature.


2011 ◽  
Vol 1 (2) ◽  
Author(s):  
Wijoyo Wijoyo ◽  
Achmad Nurhidayat ◽  
Catur Purnomo

The purpose of this study is to investigate the influence of fiber volume fraction of the impact strength of palm fiber-unsaturated polyester composite and investigate the mechanism of fracture caused by impact loads. This research material is palm fiber (Arenga pinnata), unsaturated polyester matrix yukalac BQTN-EX 157 type, hardener metyl etyl ketone peroxide (MEKPO), alkali solution (NaOH) and H2O. Testing with Charpy impact tester, impact test specimens prepared according to standard test ASTM D-5942. While the macro picture is used for the analysis of the fracture. The results showed that the most optimum impact toughness of palm fiber-polyester composite reached 0.011 J/mm2 on volume fraction (Vf) 40%. While the interaction characteristics of palm-fiber bond strength polyester showed matrix cracking behavior of failure on volume fraction (Vf) 10% to 30%, and fiber pull out the volume fraction (Vf) 40% and 50%, the same fracture behavior between the matrix and fibers in volume fraction (Vf) 40% indicates that fiber and matrix has a strong bonding interaction.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ł. Konat ◽  
R. Jasiński ◽  
B. Białobrzeska ◽  
Ł. Szczepański

Abstract The article discusses the static and dynamic properties of high-strength, boron-containing Hardox 600 steel that is resistant to abrasive wear, both in its delivery state and after normalization. Since the available published material in the literature does not have any real mechanical indicators of the abovementioned steel, a static tension test was carried out at an ambient temperature. The steel’s tensile strength, yield strength, Young’s modulus, elongation and reduction of area were determined from the test. The Charpy impact test at temperatures of −40 °C, −20 °C, 0 °C, and +20 °C and fractographic analysis were performed to determine the transition temperature of ductility to brittleness. In dynamic load conditions, the assigned values of impact energy do not always truly determine the material behavior. Thus, the aim of the fractography was to provide precision when determining the behavior. A significant difference in the impact energy of the tested steel with respect to its heat treatment and ductile-brittle transition temperature was observed and determined based on the impact test result, as well as the nature of the fracture. On the basis of the determined structural and strength characteristics, an analysis of the possibility of application of Hardox 600 steel on selected elements of working machines was performed.


2020 ◽  
Vol 1 (1) ◽  
pp. 17-24
Author(s):  
Wan Aiman Hakim Wan Maliki ◽  
Muhd Hafeez Zainulabidin

In order to reduce noise nowadays, many researcher find different way to solve this problem. One of the ways to reduce noise is by using a sound insulation. This research has been conducted in order to produce high density sound insulation panel made from ceramic. The fabrication of ceramic panel undergo several processes which are milling, mixing, forming, drying and sintering process. The ceramic panel of different  types of forming were developed as square plate 110mm x 110 mm with a constant thickness of 5 mm. Type of forming were used for this particular study are slip casting and uniaxial press. The composition used were 100 % clay and 90% + 10 % clay cement. The transmission loss were determined by using acoustic insulation test. The apparatus consists of sound level meter, portable speaker and computer. The Sound Pressure Levels (SPL) were taken at 250 Hz, 500 Hz, 1000 Hz, 2000 Hz and 4000 Hz which based on 1 octave frequency bands. The analysis shown that the sample 90 % + 10 % clay cement casting has the higher transmission loss in the lower frequency region, the sample 90 % + 10 % clay cement uniaxial press has the higher transmission loss in the middle frequency region and lastly the sample 100 % clay uniaxial press has the higher transmission loss in higher frequency region. The sample also were tested using Charpy impact test in order to gain their impact energy and impact strength. The tests were according to ASTM-D256. Charpy impact test can determines the amount of energy absorbed by a material during fracture. The analysis shown that the impact energy of the ceramic panel have a small percentage different. It can be concluded that uniaxial press is better than the slip casting in forming ceramic insulation panel.


2011 ◽  
Vol 264-265 ◽  
pp. 301-304
Author(s):  
N.E. Salehudin ◽  
Azman Jalar ◽  
Abdul Razak Daud

Average roughness is an increasingly important method in material sciences. The searching for a possible correlation between average roughness and impact energy are current interest. This paper present the results of an experimentally study made on the correlation between the average roughness and the impact energy in aluminum alloy by using scatted diagram. The impact energy of aluminum alloy was obtained by using Charpy Impact Test. The micrographs of fractured aluminum alloy were analyzed with the IFM (Infinite Focus Measurement) profile to determine the parameter of average roughness. The result shows the relationship maybe established between average roughness and impact energy.


2014 ◽  
Vol 794-796 ◽  
pp. 267-272
Author(s):  
Salar Bozorgi ◽  
Kevin Anders ◽  
Christoph Angermeier ◽  
Christian Chimani

The automotive applications using heat-treatable aluminum cast alloys are designed for high impact energy which can be improved using specified casting process and different heat treatment. In this study an economical and convent squeeze casting machine was used to produce the u-profile with 3mm wall thickness under controlled solidification conditions. The casted samples were used for mechanical and metallographical characterization. The mechanical properties of alloys containing different amount of Fe, Mn und Mg were determined as a function of different heat treatment condition such as modified T7 and Silicon Spheroidization Treatment (SST). The microstructure of casted alloys were quantificational determined by a combination of light optical microscope and scanning electron microscope (SEM) equipped with an energy dispersive spectroscopy (EDS) module to identify the morphology and chemical composition of intermetallic eutectic phases. The results of Charpy impact test show that impact energy increases after modified T7 or SST heat treatment significantly compared with the as cast state. Furthermore the impact energy is less in the higher Mg containing alloys (0.15wt.%) compared with the less Mg containing alloy (0.07wt.%).


Sign in / Sign up

Export Citation Format

Share Document