Investigation on the Influence of Precipitated Phase on Corrosion Resistance of the Ni-Based Alloys

2012 ◽  
Vol 184-185 ◽  
pp. 1038-1043
Author(s):  
Xue Hui Zhao ◽  
Zhen Quan Bai ◽  
Yao Rong Feng ◽  
An Qing Fu

The influence of precipitated phases in Ni-based alloys during solid solution aging treatment on the performance of Ni-based alloys was investigated by means of metallographic observation, scanning electron microscope (SEM), and transmission electron microscope (TEM). The variation of microstructure and resultant phases as a result of solid solution aging treatment at different temperatures was discussed. The results show that the heat treatment temperature has significant influences on the type as well as quantity of precipitation phases. Lots of phases precipitated at grain boundaries, the distribution of precipitated phases are characterized by mesh-like structure. The corrosion tests results indicate that there is a potential difference between grains and grain boundaries due to the precipitation of chrome carbide at grain boundaries, resulting in pitting corrosion occurred preferentially at grain boundaries, consequently, the corrosion resistance of Ni-based alloys is reduced. In order to enhance the corrosion resistance of Ni-based alloys, it is expected to control the carbon content in a lower range and proper heat treatment process to avoid large amount precipitation of chrome carbide.

2011 ◽  
Vol 467-469 ◽  
pp. 365-368
Author(s):  
Yun Ying Fan ◽  
Ye Hua Jiang ◽  
Rong Zhou

Fe-based amorphous coatings have many excellent performances, such as good corrosion resistance, high hardness, satisfactory magnetism, etc. In this paper, Fe-P amorphous coatings were prepared by electrodeposition method, and the phase transformation, microstructure, and hardness of the coatings heated at different heat-treatment temperature were investigated. The results show that Fe-P amorphous coatings begin to crystallize when heated at 300°C, the α-Fe(P) solid solution appears when heated at 330°C, and FexP(X=1,2,3) compounds separate out from the solid solution when heat-treatment temperature is up to 370°C. During the process of heat-treatment, hardness of the Fe-P coating increases as the reinforcement result of solid solution and dispersed phase in the coatings, and the hardness reaches the maximum 1100 HV at 370°C. When heat-treatment temperature is higher than 460°C, dispersed phase in the coatings will grow up, which is called Ostwald Coarsening Phenomenon, and hardness of the coating decreases quickly.


Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 858
Author(s):  
Shenglin Liu ◽  
Yongsheng Zhu ◽  
Xinyue Lai ◽  
Xueping Zheng ◽  
Runnan Jia ◽  
...  

Fe-based amorphous/nanocrystalline coatings with smooth, compact interior structure and low porosity were fabricated via supersonic plasma spraying (SPS). The coatings showed outstanding corrosion resistance in a 3.5% NaCl solution at room temperature. In order to analyze the effect of annealing treatment on the microstructure, corrosion resistance and microhardness, the as-sprayed coating was annealed for 1 h under different temperatures such as 350, 450, 550 and 650 °C, respectively. The results showed that the number of oxides and cracks in the coatings presented an obvious increase with increasing annealing temperature, and the corrosion resistance of the coatings showed an obvious reduction. However, the microhardness of coatings showed an important increase. The microhardness of the coating could reach 1018 HV when the heat treatment temperature reached 650 °C. The X-ray diffraction (XRD) results showed that there appeared a number of crystalline phases in the coating when the heat treatment temperature was at 650 °C. The crystalline phases led to the increase of the microhardness.


2014 ◽  
Vol 988 ◽  
pp. 145-150
Author(s):  
Jian Chen ◽  
Ming Zhang ◽  
Dong Yang ◽  
Huan Liang

CuNiCoBe alloy and CuCoBe alloy were cast by the vacuum inductive melting technique, and were heat treated under certain parameters. By using optical microscope, sclerometer and conductivity meter, the properties of two alloys were investigated after heat treatment. Experimental results show that the process of 980 °C for solid solution and three hours of aging at 450 °C is the best heat treatment for CuCoBe alloy, while 960 °C is the best solid solution treatment temperature for CuNiCoBe alloy with the same aging measures. Ni is beneficial to improve the hardness and conductivity of alloys, and CuNiCoBe alloy has better strength, hardness and conductivity than CuCoBe alloy at different temperatures, and two alloys all have a conductivity mutation increase near 450 °C. CuNiCoBe alloy and CuCoBe alloy soften respectively at 464 °C and 471 °C.


2011 ◽  
Vol 239-242 ◽  
pp. 3362-3366
Author(s):  
Cheng Zhang Peng ◽  
Ling Ling Zhu ◽  
You Ming Chen

The Ni-P/ BN(h) composite coatings were prepared by pulse electroplating,and were heat treated at temperature of 200~400°C.The microstructure of the composite coatings was identified by X-ray diffraction,the corrosion behavior of the composite coatings in 3.5%NaCl and 10%H2SO4 solutions was investigated by the linear polarization measurements and scanning electron microscope (SEM).The results show that the as-deposited is an amorphous structure,the precipitated phases are Ni12P5 and Ni5P2 metastable state phases when heat treatment temperature is below 300°C,the precipitated phases is Ni3P stable state phase heat-treated at 400°C,the composite coating was crystallized in great degree.Both the as-deposited and heat treated composite coatings revealed best corrosion resistance in 3.5%NaCl and 10%H2SO4 solutions.


2007 ◽  
Vol 546-549 ◽  
pp. 1015-1020
Author(s):  
Wen Yan Wang ◽  
Jing Pei Xie ◽  
Wei Li ◽  
Zhong Xia Liu

Electronic tensile testing, scanning electron microscope, transmission electron microscope, X-ray diffractometer and high resolution transmission microscope were employed to investigate the mechanical properties, microstructure, tensile fracture and morphology of the precipitated phases of an electrolytic low-titanium wrought 6009 aluminum alloy. Results showed that the mechanical properties of the electrolytic aluminum sheet were improved by solid solution treatment incorporating with pre-aging treatment. The tensile strength and extensibility were enhanced by a factor of 23% and 38% by pre-aging treatment at 150 °C for 5 minutes respectively; a large quantity of nucleation sites of β˝ phase were generated by pre-aging treatment, which was propitious to the transformation from solid solution state to GP zone, and the stable size of GP zone formed during the pre-aging process promoted the precipitation of Mg2Si phase. The Mg2Si phase was revealed by HRTEM and the crystalline stripes were obtained by Fourier transformation.


2019 ◽  
Vol 51 (3) ◽  
pp. 372-377
Author(s):  
U. Stamenković ◽  
S. Ivanov ◽  
I. Marković

The scope of this paper is the investigation of the effect of precipitation on an EN AW-6060 aluminum alloy by measuring mechanical, physical, and thermal properties. According to the exothermic peaks that appeared on the DSC thermogram and thermal diffusivity curve, parameters for isochronal aging treatment were defined. Thermal, mechanical, physical, and structural properties were investigated during the isochronal aging. The maximal enhancement of mechanical properties was achieved after aging at 230 °C for 30 min, whereas the most favorable thermal properties were obtained after aging at the same temperature for 60 min. During the aging, the precipitation from the solid solution caused a gradual increase in electrical conductivity. SEM/EDS microstructural investigations confirmed the existence of precipitated phases and provided the insight into their distribution within the microstructure. Keywords: aluminum alloys, EN AW-6060, aging, heat treatment, thermal properties


2019 ◽  
Vol 63 (2) ◽  
pp. 79-85 ◽  
Author(s):  
Prasad U. Syam ◽  
V. V. Kondaiah ◽  
K. Akhil ◽  
V. Vijay Kumar ◽  
B. Nagamani ◽  
...  

Abstract Magnesium and its alloys are now attracting a great attention as promising materials for several light weight engineering applications. ZE41 is a new Mg alloy contains Zinc, Zirconium and Rare Earth elements as the important alloying elements and is widely used in aerospace applications. In the present study, heat treatment has been carried out at two different temperatures (300 and 335 °C) to assess the effect of heat treatment on microstructure and corrosion behavior of ZE41 Mg alloy. The grain size was observed as almost similar for the unprocessed and heat treated samples. Decreased amount of secondary phase (MgZn2) was observed after heat treating at 300 °C and increased intermetallic phase (Mg7Zn3) and higher number of twins appeared for the samples heat treated at 335 °C. Microhardness measurements showed increased hardness after heat treating at 300 °C and decreased hardness after heat treating at 335 °C which can be attributed to the presence of higher supersaturated grains after heat treating at 300 °C. The samples heat treated at 335 °C exhibited better corrosion resistance compared to those of base materials and samples heat treated at 300 °C. From the results, it can be understood that the selection of heat treatment temperature is crucial that depends on the requirement i.e. to improve the microhardness or at the loss of microhardness to improve the corrosion resistance of ZE41 Mg alloy.


Alloy Digest ◽  
1993 ◽  
Vol 42 (10) ◽  

Abstract ALTEMP HX is an austenitic nickel-base alloy designed for outstanding oxidation and strength at high temperatures. The alloy is solid-solution strengthened. Applications include uses in the aerospace, heat treatment and petrochemical markets. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness and creep. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, and joining. Filing Code: Ni-442. Producer or source: Allegheny Ludlum Corporation.


Alloy Digest ◽  
1992 ◽  
Vol 41 (5) ◽  

Abstract INCO ALLOY 330 is a nickel/iron/chromium austenitic alloy, not hardenable by heat treatment. It is a solid solution strengthened high-temperature alloy. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ni-403. Producer or source: Inco Alloys International Inc..


2018 ◽  
Vol 69 (5) ◽  
pp. 1055-1059 ◽  
Author(s):  
Mariana Ciurdas ◽  
Ioana Arina Gherghescu ◽  
Sorin Ciuca ◽  
Alina Daniela Necsulescu ◽  
Cosmin Cotrut ◽  
...  

Aluminium bronzes are exhibiting good corrosion resistance in saline environments combined with high mechanical properties. Their corrosion resistance is obviously confered by the alloy chemical composition, but it can also be improved by heat treatment structural changes. In the present paper, five Cu-Al-Fe-Mn bronze samples were subjected to annealing heat treatments with furnace cooling, water quenching and water quenching followed by tempering at three different temperatures: 200, 400 and 550�C. The heating temperature on annealing and quenching was 900�C. The structure of the heat treated samples was studied by optical and scanning electron microscopy. Subsequently, the five samples were submitted to corrosion tests. The best resistance to galvanic corrosion was showed by the quenched sample, but it can be said that all samples are characterized by close values of open-circuit potentials and corrosion potentials. Concerning the susceptibility to other types of corrosion (selective leaching, pitting, crevice corrosion), the best corrosion resistant structure consists of a solid solution, g2 and k compounds, corresponding to the quenched and 550�C tempered sample.


Sign in / Sign up

Export Citation Format

Share Document