Low-Cycle Fatigue Behavior of Permanent-Mold Cast and Die-Cast Al-Si-Cu-Mg-Sc Aluminum Alloys

2012 ◽  
Vol 184-185 ◽  
pp. 1044-1049
Author(s):  
Xin Che ◽  
Feng Li ◽  
Li Jia Chen

The low-cycle fatigue behaviors of permanent-mold cast and die-cast Al-Si-Cu-Mg-Sc alloys at room temperature were investigated. The results show that at the higher total strain amplitudes, both permanent-mould cast and die-cast Al-Si-Cu-Mg-Sc alloys exhibit the cyclic strain hardening. However, at the lowest total strain amplitude, the cyclic strain hardening occurs in the initial and middle stages of fatigue deformation and the stable cyclic stress response is noted in the later stage of fatigue deformation for the permanent-mould cast alloy, while the cyclic strain hardening phenomenon is observed during whole fatigue deformation for the die-cast alloy. At the same total strain amplitude, the die-cast alloy shows the higher cyclic deformation resistance than the permanent-mold cast alloy. Compared with the permanent-mold cast alloy, the die-cast alloy possesses the longer fatigue life at the lower total strain amplitudes. The relationship between both elastic and plastic strain amplitudes with reversals to failure shows a monotonic linear behavior for both permanent-mold cast and die-cast Al-Si-Cu-Mg-Sc alloys

2011 ◽  
Vol 399-401 ◽  
pp. 1937-1941 ◽  
Author(s):  
Wen Yong Xu ◽  
Guo Qing Zhang ◽  
Zhou Li

Low cycle fatigue behavior of spray formed superalloy GH738 at 650°C has been investigated under fully reversed total strain-controlled mode. When strain amplitude (Δεt/2) is between 0.32% and 0.4%, cyclic stress response is stable under fully reversed constant total strain amplitude. The stabilized hysteresis loops narrowing sharply to a straight line indicates that the alloy exhibits typical elastic strain. The crack initiates single site from the surface. When strain amplitude is between 0.6% and 1.0%, cyclic hardening is observed until fracture. The tendency for hardening is found to increase with strain amplitude. The hyperesis loops expand gradually, which indicates that plastic deformation happens during cyclic deformation process. The crack initiates multi-sites from the surface. The cyclic strain-stress relationship of spray formed GH738 at 650°C can be illustrated by Δσ/2 =2017(Δεp/2)0.1489.The total strain-life function can expressed by Δεt/2=0.0071(2Nf)-0.0781+0.0647(2Nf) )-0.4914.


Author(s):  
Jorge E. Egger ◽  
Fabian R. Rojas ◽  
Leonardo M. Massone

AbstractLow cycle fatigue life of high-strength reinforcing steel bars (ASTM A706 Grade 80), using photogrammetry by RGB methodology is evaluated. Fatigue tests are performed on specimens under constant axial displacement with total strain amplitudes ranging from 0.01 to 0.05. The experimental observations indicate that buckling of high-strength reinforcing bars results in a damaging degradation of their fatigue life performance as the slenderness ratio increases, including an early rebar failure as the total strain amplitude increases since it achieves the plastic range faster. In addition to this, the results show that the ratio of the ultimate tensile strength to yield strength satisfies the minimum of 1.25 specified in ASTM A706 for reinforcement. On the other hand, the RGB methodology indicates that the axial strains measured by photogrammetry provide more accurate data since the registered results by the traditional experimental setup do not detect second-order effects, such as slippage or lengthening of the specimens within the clamps. Moreover, the RGB filter is faster than digital image correlation (DIC) because the RGB methodology requires a fewer computational cost than DIC algorithms. The RGB methodology allows to reduce the total strain amplitude up to 45% compared to the results obtained by the traditional setup. Finally, models relating total strain amplitude with half-cycles to failure and total strain amplitude with total energy dissipated for multiple slenderness ratios (L/d of 5, 10, and 15) are obtained.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4115
Author(s):  
Sohail Mohammed ◽  
Shubham Gupta ◽  
Dejiang Li ◽  
Xiaoqin Zeng ◽  
Daolun Chen

The purpose of this investigation was to study the low-cycle fatigue (LCF) behavior of a newly developed high-pressure die-cast (HPDC) Al-5.5Mg-2.5Si-0.6Mn-0.2Fe (AlMgSiMnFe) alloy. The effect of heat-treatment in comparison with its as-cast counterpart was also identified. The layered (α-Al + Mg2Si) eutectic structure plus a small amount of Al8(Fe,Mn)2Si phase in the as-cast condition became an in-situ Mg2Si particulate-reinforced aluminum composite with spherical Mg2Si particles uniformly distributed in the α-Al matrix after heat treatment. Due to the spheroidization of intermetallic phases including both Mg2Si and Al8(Fe,Mn)2Si, the ductility and hardening capacity increased while the yield stress (YS) and ultimate tensile strength (UTS) decreased. Portevin–Le Chatelier effect (or serrated flow) was observed in both tensile stress–strain curves and initial hysteresis loops during cyclic deformation because of dynamic strain aging caused by strong dislocation–precipitate interactions. The alloy exhibited cyclic hardening in both as-cast and heat-treated conditions when the applied total strain amplitude was above 0.4%, below which cyclic stabilization was sustained. The heat-treated alloy displayed a larger plastic strain amplitude and a lower stress amplitude at a given total strain amplitude, demonstrating a superior fatigue resistance in the LCF regime. A simple equation based on the stress amplitude of the first and mid-life cycles ((Δσ/2)first, (Δσ/2)mid) was proposed to characterize the degree of cyclic hardening/softening (D): D=±(Δσ/2)mid − (Δσ/2)first(Δσ/2)first, where the positive sign “+” represents cyclic hardening and the negative sign “−“ reflects cyclic softening.


Author(s):  
Anne-Lise Gloanec ◽  
Aqmal Syafiq Anis ◽  
Stéphan Courtin

The aim of this work was to study the influence of variable amplitude loading on the fatigue crack initiation and propagation. Low Cycle Fatigue (LCF) tests are conducted, on an AISI type 304L austenitic stainless steel, at different total-strain-amplitudes, in laboratory air at room temperature and with a constant strain rate of 3.10−3 s−1. Two types of signal were used: a conventional signal and a complex signal. The first one was triangular in shape with a negative strain ratio (Rε = −1). The second one is still triangular in shape with Rε = −1, but between the maximum of the total-strain (εmax = +0.6%) and the minimum (εmin = −0.6%), several cycles with a smaller total-strain-amplitude are introduced (with values ranged from 0% to +/− 0.3%). From these tests, several conclusions can be drawn on Cyclic Stress Strain (CSS) behaviour, fatigue life and fracture characteristics.


2012 ◽  
Vol 726 ◽  
pp. 43-48 ◽  
Author(s):  
Ewa Marcisz ◽  
Adam Niesłony ◽  
Tadeusz Łagoda

The paper presents the concept of division of the total strain amplitudes. Simulations were performed for high-alloy steel X6NiCr3220 for proposing a new curve of cyclic strain based on the best fit to the experimental points and plotted the hysteresis loop. Proposed allocation of the total strain amplitude in three parts: the plastic strain amplitude, strain amplitude and the amplitude of the linearly elastic strain coupled. In order to preserve the forms of popular formula Ramberg-Osgoda and Manson-Coffin-Basquin modified them in such a way that added to their member responsible for the description of the coupled strain. Inclusion of additional term leading to closer representation of the actual material properties.


2015 ◽  
Vol 665 ◽  
pp. 73-76 ◽  
Author(s):  
Ivo Šulák ◽  
Karel Obrtlík ◽  
Ladislav Čelko

The present work is focused on the study of low cycle fatigue behavior of grit blasted nickel-base superalloy Inconel 713LC (IN 713LC). Grit blasting parameters are obtained. Button end specimens of IN 713LC in as-received condition and with grit blasted surface were fatigued under strain control with constant total strain amplitude in symmetrical cycle at 900 °C in air. Hardening/softening curves, cyclic stress-strain curve and fatigue life data of both materials were obtained. Both materials exhibit the same stress-strain response. It has not been observed any improvement or reduction of low cycle fatigue life in representation of total strain amplitude versus number of cycles to failure of grit blasted material in comparison with as-received material. Surface relief and fracture surface were observed in SEM. The little effect of surface treatment on fatigue characteristics is discussed.


1994 ◽  
Vol 364 ◽  
Author(s):  
Yuefeng Gu ◽  
Yi Liu ◽  
Jianting Guo ◽  
Dongliang Lin

AbstractStress response and its correlation with dislocation substructures in Ni3(Al,Zr) single crystal fatigued at room temperature have been studied. Cyclic strain hardening was found to be asymmetric and increased with increasing applied cyclic strain. Transmission Electron Microscope (TEM) observation showed that there are a profusion superlattic intrinsic stacking faults (SISFs) in fatigued Ni3(Al,Zr) single crystal samples. The cyclic strain hardening and stress asymmetry are explained by the movement of the SISF.


2011 ◽  
Vol 239-242 ◽  
pp. 1309-1312
Author(s):  
Zhong Jun Wang

In this paper, the influence of ageing and solution treatment on the low cycle fatigue behavior of a rolled AZ80 magnesium alloy sheet was investigated at constant total strain amplitudes between 0.003 and 0.01. It was observed that fatigue life of the alloy sheet at as-rolled, ageing and solution treatment conditions can be described well by Coffin-Manson and Basquin’s equations. The fatigue parameters follow the two equations were evaluated. With increasing total strain amplitude, the fatigue life of the three conditions decreased. At the lowest total strain amplitude of 0.003, the fatigue life of the as-rolled alloy sheet was the biggest. However, at the highest total strain amplitude of 0.01, the fatigue life of solution treated alloy sheet was the biggest, and that of the ageing treated alloy sheet was the shortest.


2016 ◽  
Vol 879 ◽  
pp. 1524-1528
Author(s):  
Peng Cheng Guo ◽  
Shuai Liu ◽  
Peng Hui Ma ◽  
Jiang Ying Meng ◽  
Fu Cheng Zhang ◽  
...  

The effects of Al on the monotonic deformation behavior of Fe-Mn-C twinning-induced plasticity (TWIP) steels have been extensively investigated; however, how the addition of Al affects the fatigue properties of these steels is unknown. The present paper deals with the cyclic deformation properties of Fe-22Mn-0.6C-0Al and Fe-22Mn-0.6C-3Al steels by means of total strain-controlled low-cycle fatigue tests. The total strain amplitude ranges from 0.002 to 0.01. The evolved microstructures of fatigued samples were observed by transmission electron microscopy. Results show that the addition of Al has a significant effect on the cyclic deformation behavior, fatigue lifetime and evolved microstructure of Fe-Mn-C TWIP steel.


Alloy Digest ◽  
1982 ◽  
Vol 31 (8) ◽  

Abstract KIDD Alloy ZA-12 is the general-purpose, zinc-aluminum-copper foundry alloy. It can be sand, permanent-mold or die cast. Alloy ZA-12 has a modest cost and a tensile strength suitable for many applications where bronze and cast or malleable iron were traditionally used. Alloy ZA-12 is extremely resistant to galling, has natural lubricity and is thus well suited to lubricated bearing and bushing applications. It is particularly well suited to liquid and gas-pressure applications. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fracture toughness and fatigue. It also includes information on casting, forming, heat treating, machining, and surface treatment. Filing Code: Zn-38. Producer or source: Kidd Creek Mines Ltd.


Sign in / Sign up

Export Citation Format

Share Document