Study on Surface Modification of Polyethylene Terephthalate(PET) Film by RF-Ar/O2 Plasma Treatment

2012 ◽  
Vol 200 ◽  
pp. 194-198 ◽  
Author(s):  
Lin Kun Xie ◽  
Qin Ling Dai ◽  
Guan Ben Du ◽  
Qi Ping Deng ◽  
Gang Lian Liu

The surface of polyethylene terephthalate film was modified using RF- Ar/ O2 glow discharge plasma under the condition of Ar and O2 flow amount of 1.9 and 1.2 (L/min) respectively and treatment power of 60 W. The changes of the properties of the film before and after modification were analyzed and characterized with static contact angle measurement, X-ray photoelectron spectroscopy(XPS), atomic force microscopy(AFM), differential scanning calorimetry(DSC). The results showed that the hydrophile of PET film was improved obviously after modification and formed some polar groups such as C-N, N-C=O, C=O, etc. on the film surface; The surface roughness was increased and appeared conical or globular protuberances; the thermal behaviors (mainly crystallinity) were changed after treatment by RF- Ar/O2 plasma.

2017 ◽  
Vol 89 (3) ◽  
pp. 401-410 ◽  
Author(s):  
Yongqiang Li ◽  
Chao Zou ◽  
Jianzhong Shao ◽  
Ya’nan Li

Cotton fabric is commonly used in daily life, but it is easily wetted and contaminated by liquid. Herein, we present a simple and environmentally friendly plasma technology for hydrophobic modification of cotton fabric. In order to endow superhydrophobicity to cotton fabric, helium plasma inducing graft polymerization of 1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane (D4Vi) was utilized to wrap SiO2 particles on cotton fabrics. Cotton fabrics were successively dipped in silica sol and D4Vi, then treated by plasma. Cotton fabrics before and after modification were characterized by using field emission scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and water contact angle measurement. The experimental results showed that the cotton-SiO2-D4Vi consisted of nanoscale SiO2 protrusions and low-surface-energy film polymerized by D4Vi. In addition, the one wrapped SiO2 of 161 nm presented excellent hydrophobicity, washing durability, and repellency toward different types of liquids with a water contact angle of 152°.


2021 ◽  
Vol 30 ◽  
pp. 2633366X2097865
Author(s):  
Li Jian

The surface treatment of carbon fibers (CFs) was carried out using a self-synthesized sizing agent. The effects of sizing agent on the surface of CFs and the interface properties of CF/polymethyl methacrylate (PMMA) composites were mainly studied. Scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and static contact angle were used to compare and study the CFs before and after the surface treatment, including surface morphology, surface chemical element composition, and wettability of the surface. The influence of sizing agent on the mechanical properties of CF/PMMA resin composite interface was investigated. The results show that after sizing treatment, the CF surface O/C value increased by 35.1% and the contact angles of CF and resin decreased by 16.2%. The interfacial shear strength and interlayer shear strength increased by 12.6%.


2014 ◽  
Vol 895 ◽  
pp. 41-44
Author(s):  
Seiw Yen Tho ◽  
Kamarulazizi Ibrahim

In this work, the influences of plasma pre-treatment on polyethylene terephthalate (PET) substrate to the properties of ZnO thin film have been carried out. ZnO thin films were successfully grown on PET substrate by spin coating method. In order to study the effects of plasma pre-treatment, a comparison of treated and untreated condition was employed. Water contact angle measurement had been carried out for PET wettability study prior to ZnO thin film coating. Morphology study of ZnO thin film was performed by scanning probe microscope (SPM). Besides, optical study of the ZnO thin film was done by using UV-vis spectrophotometer. All the measured results show that plasma pre-treatment of PET substrate plays an important role in enhancing the wettability of PET and optical properties of the ZnO thin films. In conclusion, pre-treatment of PET surface is essential to produce higher quality ZnO thin film on this particular substrate in which would pave the way for the integration of future devices.


2015 ◽  
Vol 1112 ◽  
pp. 359-362
Author(s):  
Aisyah Nor Hasnan ◽  
Azizah Hanom Ahmad

Dammar plant resin is a local natural resin that can be bled from Dipterocaupacea sp of tree. It can be found abundantly in Malaysia’s tropical forest especially in Sarawak. Dammar and Titanium Dioxide was mixed in a various wt% to produce Dammar-modified Titanium Dioxide coating system. The modified coating systems were then spin-coated onto Aluminium Q-panel as the substrate. Coated Q-panels were left to cure at room temperature. The curing time was evaluated using dust free stage. The addition of Titanium Dioxide into the coating system fastens the curing time taken for the coated Q-panel to be cure. It only took about 11-12 minutes to dry compared to the coating system before the addition of Titanium Dioxide where a quite long duration required, 32 minutes. Contact angle measurement was also carried out in order to determine the wettability of the coating system. The surface coated with dammar-modified titanium dioxide found to be hydrophobic where a quite large contact angle obtained for the sample with 3 wt% of Titanium Dioxide (PDT3). The water droplets actually rest on the coating surface without wetting the surface. Water absorption test was done to strengthen the contact angle results where coated substrate was soaked into distilled water for 24 hours and being weighed before and after soaking. The difference of before and after soaking weigh showed that the coating surface does not absorb that much water where only approximately 0.02% of water being absorbed by the coating system for 3 wt%. It proved that the coating systems applied are hydrophobic.


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 370
Author(s):  
Hadi Gholamiyan ◽  
Behnam Gholampoor ◽  
Reza Hosseinpourpia

This research investigates the effect of plasma treatment with air, nitrogen (N2), and carbon dioxide (CO2) gases on the performance of waterborne (acrylic) and solvent-borne (polyester) coated fir (Abies alba M.) wood samples. The properties of the plasma-coated samples were analyzed before and after exposure to accelerated weathering and compared with those of untreated and solely treated ones. According to pull-off testing, the coating adhesion of the wood samples was considerably improved by plasma treatment, and obvious differences were observed between different plasma gases. The effect was more pronounced after the weathering test. Similar results were obtained for the abrasion resistance of the samples. The water contact angle measurement illustrated more hydrophilic character in the solely plasma-treated wood in comparison with the untreated wood. The application of coatings, however, strongly improved its hydrophobic character. The performances of waterborne and solvent-borne coatings on plasma-treated wood were comparable, although slightly better values were obtained by the waterborne system. Our results exhibit the positive effect of plasma treatment on coating performances and the increased weather resistance of the waterborne and solvent-borne coating systems on plasma-treated wood.


2021 ◽  
Vol 9 ◽  
Author(s):  
Li Chen ◽  
Gang Wu ◽  
Yin Huang ◽  
Changning Bai ◽  
Yuanlie Yu ◽  
...  

Taking advantage of the strong charge interactions between negatively charged graphene oxide (GO) sheets and positively charged poly(diallyldimethylammonium chloride) (PDDA), self-assembled multilayer films of (GO/PDDA)n were created on hydroxylated silicon substrates by alternating electrostatic adsorption of GO and PDDA. The formation and structure of the films were analyzed by means of water contact angle measurement, thickness measurement, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Meanwhile, tribological behaviors in micro- and macro- scale were investigated by AFM and a ball-on-plate tribometer, respectively. The results showed that (GO/PDDA)n multilayer films exhibited excellent friction-reducing and anti-wear abilities in both micro- and macro-scale, which was ascribed to the special structure in (GO/PDDA)n multilayer films, namely, a well-stacked GO–GO layered structure and an elastic 3D crystal stack in whole. Such a film structure is suitable for design molecular lubricants for MEMS and other microdevices.


2011 ◽  
Vol 396-398 ◽  
pp. 1619-1623
Author(s):  
Zhao Ping Song ◽  
Jun Rong Li ◽  
Hui Ning Xiao

Hydrophobic modification of cellulose fibres was conducted by plasma-induced polymer grafting in an attempt to increase the hydrophobicity of paper. Two hydrophobic monomers, i.e., butyl acrylate (BA) and 2-ethylhexyl acrylate (2-EHA) were grafted on cellulose fibres, induced by atmospheric cold plasma. Various influencing factors associated with the plasma-induced grafting were investigated, including the contact time and reaction temperature with monomers, and the dosage of monomers. Contact-angle measurement, infrared spectrum (IR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM) were used to ascertain the occurrence of the grafting. The results showed that the hydrophobic property of the modified paper sheet was improved significantly after the plasma-induced grafting. The water contact angle on the surface of the paper reached up to higher than125°.


2020 ◽  
Vol 60 (1) ◽  
pp. 117
Author(s):  
Cut Aja Fauziah ◽  
Emad A. Al-Khdheeawi ◽  
Ahmed Barifcani ◽  
Stefan Iglauer

Wettability of rock–fluid systems is an important for controlling the carbon dioxide (CO2) movement and the capacities of CO2 geological trapping mechanisms. Although contact angle measurement is considered a potentially scalable parameter for evaluation of the wettability characteristics, there are still large uncertainties associated with the contact angle measurement for CO2–brine–rock systems. Thus, this study experimentally examined the wettability, before and after flooding, of two different samples of sandstone: Berea and Bandera grey sandstones. For both samples, several sets of flooding of brine (5 wt % NaCl + 1 wt % KCl in deionised water), CO2-saturated (live) brine and supercritical CO2 were performed. The contact angle measurements were conducted for the CO2–sandstone system at two different reservoir pressures (10 and 15 MPa) and at a reservoir temperature of 323 K. The results showed that both the advancing and receding contact angles of the sandstone samples after flooding were higher than that measured before flooding (i.e. after CO2 injection the sandstones became more CO2-wet). Moreover, the Bandera grey samples had higher contact angles than Berea sandstone. Thus, we conclude that CO2 flooding altered the sandstone wettability to be more CO2-wet, and Berea sandstone had a higher CO2 storage capacity than Bandera grey sandstone.


2019 ◽  
Vol 3 (3) ◽  
pp. 60
Author(s):  
Keishi Naito ◽  
Yuji Kataoka ◽  
Kisaragi Yashiro

The development of an anisotropic conductive film was attempted using original microfabrication (stick-slip (SS) processing) involving SS accompanying abrasion. During SS processing, the film surface was periodically scraped with a razor. For a metal-deposited polyethylene terephthalate (PET) film (metal/PET film), fine periodic structures (line and space (L/S)-like patterns) were formed on its surface because the metal layer was periodically scraped. This result proved that SS processing can be applied not only to polymers but also to metals. Moreover, the line interval of an SS-processed metal/PET film shortened as the contact force decreased, and the depth of the line became shallower in proportion to the line interval. In addition, SS-processed copper/PET (Cu/PET) film did not conduct electricity in the direction perpendicular to the Cu line; however, it conducted electricity in the direction parallel. Thus, this study shows the possibility of using SS processing for fabricating an anisotropic conductive film.


2013 ◽  
Vol 33 (9) ◽  
pp. 843-850 ◽  
Author(s):  
Hamid Salehi-Mobarakeh ◽  
Ali Yadegari ◽  
Javad Didehvar ◽  
Fahimeh Khakzad-Esfahlan

Abstract Ethylene-vinyl alcohol copolymers (EVOH), with appropriate barriers and processability, can be chemically modified through vinyl alcohol units. Amides and polyamides based on condensation reactions of adipoyl chloride and hexamethylenediamine were grafted onto EVOH. Grafting was characterized by contact angle measurement, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), nuclear magnetic resonance spectroscopy (NMR) and scanning electron microscopy (SEM). Amide peaks at 3302 cm-1 corresponding to –NH bond stretching and the absorption of HN-CH2 at 7.8 ppm, were observed from ATR-FTIR and NMR, respectively, as a result of grafting. SEM showed the formation of amide structures as bundles, agglomerates and needle-like particles. Differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA) showed considerable changes in onset of melt temperature, crystallinity and various transitions in grafted EVOH, showing an effective alteration in the physical properties compared with the virgin resin. Nylon grafted EVOH can be considered as a potential compatibilizer in polyethylene (PE)/polyamide blends via increasing interactions at the interface.


Sign in / Sign up

Export Citation Format

Share Document