System Optimization on Course Group of Modern Machinery Design Method

2012 ◽  
Vol 201-202 ◽  
pp. 812-815
Author(s):  
Ping Yuan Xi ◽  
Bing Wang

Modern machinery design method is the effective means to solve practical engineering technical problem, so it is very necessary to develop modern mechanical design thought and grasp modern mechanical design method. Through the teaching of the modern mechanical design method the students could grasp this method and the basic design means, and has certain solving ability to practical mechanical engineering problems in this method. In this paper we would thoroughly analyze the teaching situation of course group of "modern machinery design method"; and rational plan teaching content of course group, and according to the achievements in scientific research of teachers, develop appropriate teaching courseware and teaching software in teaching.

Author(s):  
Li Xin

Mechanical CAD/CAM technology is an important course for the mechanical design and manufacturing major. Its scope has a wide teaching content and discipline span, and is regarded a comprehensive course with strong theoretical and practical characteristics. Theoretical teaching was emphasized in the past to undervalue software operation. Unpractical teaching content directly resulted in student’s insufficient practice after the course. Thus, teaching reform measures were proposed, such as optimizing teaching contents, implementing modular teaching, introducing skill-based software, and formulating typical work tasks. Combined with theoretical knowledge, students used the software as a tool to accomplish designated tasks and reach corresponding teaching objectives. Taking mouse punch as an example, MasterCAM software was used to introduce the specific mode of task-oriented teaching in CAD/CAM experiments. Results show that students improve their abilities of applying CAD/CAM software after the course’s teaching reform. Practical engineering problems are analyzed thoroughly and orderly. Employment quantity and quality of graduates are significantly improved to gain praises from enterprises and achieve a remarkable teaching effect.


Author(s):  
Li Xin

Mechanical CAD/CAM technology is an important course for the major of mechanical design and manufacturing, with wide teaching content and discipline span. It is also a comprehensive course with strong theoretical and practical characteristics. In the past teaching process, theoretical teaching was emphasized to despise the software operation. Unpractical teaching content directly results in insufficient ability of practice after learning the course. In order to solve these problems mentioned above, teaching reform measures were put forward, such as optimizing teaching contents, implementing modular teaching, introducing skill-based software and formulating typical work tasks. Combined with the theoretical knowledge, students used the software as a tool to accomplish the designated tasks and reach corresponding teaching objectives. Taking mouse punch as an example, MasterCAM software was used to introduce the specific mode of task-oriented teaching in CAD/CAM experiments. Results show that the students improve their abilities of applying CAD/CAM software after teaching reform in this course. The practical engineering problems are analyzed more thorough and orderly. Employment quantity and quality of graduates are significantly improved to get more praises from enterprises, achieving remarkable teaching effect.


2016 ◽  
Vol 30 (11) ◽  
pp. 1391-1406 ◽  
Author(s):  
Licheng Zhou ◽  
Yang Ju ◽  
Yongmao Pei ◽  
Daining Fang

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Ze Li ◽  
Ping Li ◽  
Xinhong Hao ◽  
Xiaopeng Yan

In active sensing systems, unimodular sequences with low autocorrelation sidelobes are widely adopted as modulation sequences to improve the distance resolution and antijamming performance. In this paper, in order to meet the requirements of specific practical engineering applications such as suppressing certain correlation coefficients and finite phase, we propose a new algorithm to design both continuous phase and finite phase unimodular sequences with a low periodic weighted integrated sidelobe level (WISL). With the help of the transformation matrix, such an algorithm decomposes the N-dimensional optimization problem into N one-dimensional optimization problems and then uses the iterative method to search the optimal solutions of the N one-dimensional optimization problems directly. Numerical experiments demonstrate the effectiveness and the convergence property of the proposed algorithm.


Author(s):  
Taesik Jeong ◽  
Thomas P. Kicher ◽  
Ronald J. Zab

Abstract An object-oriented programming (OOP) technique is investigated in order to develop the framework for mechanical design automation systems. A task-oriented decomposition approach is applied to conceptualize the task-object (or task-performing-object) in which common behavior and communication protocols are encapsulated [1]. Each task in the entire design process, either controlling design strategies or performing design methods, is made into an object. The design method objects are implemented using Artificial Intelligence (AI) paradigms, such as artificial neural networks and expert systems. This report explains how OOP is integrated to develop a mechanical design framework (MDF). A single reduction gear box design process was used to identify some of the general tasks involved in mechanical design process. From this process the guidelines for developing task-objects for future systems are formed. Full details of these guidelines and an implementation example in Smalltalk on a PC are available in [7].


1987 ◽  
Vol 24 (02) ◽  
pp. 131-142
Author(s):  
Warren F. Smith ◽  
Saiyid Kamal ◽  
Farrokh Mistree

The design of engineering systems involves the design of dependent subsystems and the integration of these into a whole. A typical system has the characteristics of being multileveled, multidimensional, and multidisciplined in nature. It is this complexity which causes problems for the designer in making well-founded decisions. A decision support technique has been developed which offers a structured facility for the design of the subsystems and for the modeling of the interaction which is present between subsystems. The method, employing optimization procedures, allows all aspects of the system design to be considered concurrently, to produce the "best" solution, as defined by the specifications. This is in contrast to the traditional design method, which is iterative and cyclic in nature, involving sequential reevaluation and refinement. In this paper, the effectiveness and efficiency of the decision support problem approach is demonstrated using the hierarchical characteristics of a design for a barge. The barge problem, though basic in form, is comprehensive in concept and tutorial in nature. As a formulation for "system" optimization, it uses a computer-based method for solution and illustrates the virtues of a multilevel/multidisciplinary approach to design and decision-making. It also exhibits the same characteristics and provides valuable insight into the solution of the more complex problems encountered in practical ship design.


2018 ◽  
Vol 2018 ◽  
pp. 1-16
Author(s):  
Yuanqi Li ◽  
Xiaoliang Qin ◽  
Jinhui Luo ◽  
Meng Xiao ◽  
Cong Hua

This paper is focused on the experimental study and numerical simulation of isolated spread concrete foundation slab with a large width-to-height ratio (in short ISCFS-LWR) to investigate the failure modes and uplift bearing capacity, as well as the design method of uplift capacity. First, a total of 16 isolated spread concrete foundation slabs with the width-to-height ratio varied from 1.5 to 4 and the hypotenuse slope varied from 10° to 30° were tested under uplift load. Based on the test results, effects of the width-to-height ratio and the hypotenuse slope on uplift bearing capacity of ISCFS-LWR were analyzed and discussed. Then, several numerical models were built using the finite element software ABAQUS and the results of numerical analysis agreed well with the test results. Furthermore, the cross-sectional performance of ISCFS-LWR was studied, and the coefficients of internal force arm were also evaluated further using previous validated numerical models. To obtain the suggested design method of uplift capacity for the foundation slab, effective width correction coefficient k and slope correction coefficient j were introduced to propose a design formula. Finally, the proposed design method was applied to a practical engineering, and the economic indicators obtained from the suggested design method were compared with that from the original design method. The results of this paper showed that the correction coefficient jsks based on numerical analysis agreed well with the recommended correction coefficient jk, and the error was between 1% and 3.4%, by which the reasonability of the proposed design method of uplift capacity for ISCFS-LWR has been proved. It can also be found that the economic benefits of the practical engineering in this paper were obvious due to the suggested design method, and this paper can provide a reference for other engineering practices and the further research work on ISCFS-LWR.


2020 ◽  
Vol 26 (9-10) ◽  
pp. 646-658
Author(s):  
Lu-yu Li ◽  
Tianjiao Zhang

A tuned mass damper is a passive control device that has been widely used in aerospace, mechanical, and civil engineering as well as many other fields. Tuned mass dampers have been studied and improved over the course of many years. In practical engineering applications, a tuned mass damper inevitably produces some nonlinear characteristics due to the large displacement and the use of the limiting devices, but this nonlinearity is often neglected. The simulation results in this study confirm that neglecting the nonlinearity in the design process can produce adverse effects on the control performance. This paper takes into account the nonlinearity of the tuned mass damper produced in the process of vibration and deduces an optimum formula for the frequency of a tuned mass damper by the complexification averaging method and multiscale method. Based on this formula, a modified design method for the frequency of a tuned mass damper is presented. The numerical results show that the nonlinear tuned mass damper after modification is better than a linear tuned mass damper in terms of control performance.


Author(s):  
Patrik Boart ◽  
Ola Isaksson

Currently, mechanical design of aero engine structural components is defined by dimensioning of Design Parameters (DP's) to meet Functional Requirements (FR's). FR's are typically loads, geometrical interfaces and other boundary conditions. Parameters from downstream processes are seldom actually seen as DP's. This paper proposes that downstream process parameters are treated as DP's which calls for engineering methods that can define and evaluate these extended set of DP's. Using the proposed approach manufacturing process alternatives can be used as DP's in early stages of product development. Both the capability to quantitatively assess impact of varying manufacturing DP's, and the availability of these design methods are needed to succeed as an early phase design method. One bottleneck is the preparation time to define and generate these advanced simulation models. This paper presents how these manufacturing process simulations can be made available by automating the weld simulation preparation stages of the engineering work. The approach is based on a modular approach where the methods are defined with knowledge based engineering techniques-operating close to the CAD system. Each method can be reused and used independently of each other and adopted to new geometries. A key advantage is the extended applicability to new products, which comes with a new set of DP's. On a local level the lead time to generate such manufacturing simulation models is reduced with more than 99% allowing manufacturing process alternatives to be used as DP's in early stages of product development.


Author(s):  
H. V. Darbinyan

Mechanism and function formalization problem is touched in a novel task based conceptual mechanical design method. The general concept and a specific application of this method were reported in earlier publications. Direct dependence between the function and mechanism, identical synthesis tools for various stages of design and for various mechanical objects are the features making the suggested method advantageously different from existing concept design approaches. The core idea of suggested conceptual design method is the direct relation between challenged function and the mechanical entity which is in charge of implementing the requested function. The existing task based conceptual design methods are not satisfying the designer’s needs for scope of application, universality of design means, visualization and formalization of both mechanical and functional fields. Formalization of functions and mechanisms is an important design tool that will facilitate synthesis, analyzes, visualization and archiving (data base creating) processes of mechanical development. Further progress in unveiling the resources of the suggested design method is mostly based on development of formalization means for both categories of functions and mechanisms. The current study is unveiling newly developed function and mechanism description language that is helping to formalize both mechanical and functional categories facilitating their involvement in design process and making the description of a new product’s mechanical development easy and understandable. Function formalization in conjunction with mechanism formalization allows to formulate precisely the design task and concentrate the designer’s attention on solution of a single task strictly arranged in the hierarchical function tree of all involved tasks and functions.


Sign in / Sign up

Export Citation Format

Share Document