scholarly journals Magnesium Alloy Stent Expansion Behavior Simulated by Finite Element Method

2012 ◽  
Vol 232 ◽  
pp. 697-700
Author(s):  
Muhammad Iqbal Sabir ◽  
Er Bao Liu ◽  
Zhen Li ◽  
Yu Feng Zheng ◽  
Li Li

Biodegradable magnesium alloy stents have gained increasing interest in the past years due to their potential prospect. Magnesium alloy is brittle compared with stainless steel. This means it has less elongation than other stent materials and it may cause strut break under large deformation. In this paper, a finite element model for magnesium alloy stent is studied to simulate the mechanical behavior of the stent. It is composed of 1.5mm in inner diameter, 7mm length, 80µm thickness and 110µm in cross-sectional width. Six mechanical properties have been studied by mathematical modeling with determination of: (1) stent deployment pressure; (2) the intrinsic elastic recoil of the material used; (3) the stent foreshortening; (4) the stent coverage area, (5) the stent flexibility; and (6) the stress maps.

2014 ◽  
Vol 609-610 ◽  
pp. 495-499
Author(s):  
Guo Cheng Ren ◽  
Xiao Juan Lin ◽  
Shu Bo Xu

The microstructure and material properties of AZ31 magnesium alloy are very sensitive to process parameters, which directly determine the service properties. To explore and understand the deformation behavior and the optimization of the deformation process, the microstructure evolution during equal channel angular pressing was predicted by using the DEFORM-3D software package at different temperature. To verify the finite element simulation results, the microstructure across the transverse direction of the billet was measured. The results show that the effects strain and deformation temperatures on the microstructure evolution of AZ31 magnesium during ECAP process are significant, and a good agreement between the predicted and experimental results was obtained, which confirmed that the derived dynamic recrystallization mathematical models can be successfully incorporated into the finite element model to predict the microstructure evolution of ECAP process for AZ31 magnesium.


Author(s):  
Z Abbasi ◽  
F Honarvar

In recent years, Higher Order Modes Cluster (HOMC) guided waves have been considered for ultrasonic testing of plates and pipes. HOMC guided waves consist of higher order Lamb wave modes that travel together as a single nondispersive wave packet. The objective of this paper is to investigate the effect of frequency-thickness value on the contribution of Lamb wave modes in an HOMC guided wave. This is an important issue that has not been thoroughly investigated before. The contribution of each Lamb wave mode in an HOMC guided wave is studied by using a two-dimensional finite element model. The level of contribution of various Lamb wave modes to the wave cluster is verified by using a 2D FFT analysis. The results show that by increasing the frequency-thickness value, the order of contributing modes in the HOMC wave packet increases. The number of modes that comprise a cluster also increases up to a specific frequency-thickness value and then it starts to decrease. Plotting of the cross-sectional displacement patterns along the HOMC guided wave paths confirms the shifting of dominant modes from lower to higher order modes with increase of frequency-thickness value. Experimental measurements conducted on a mild steel plate are used to verify the finite element simulations. The experimental results are found to be in good agreement with simulations and confirm the changes observed in the level of contribution of Lamb wave modes in a wave cluster by changing the frequency-thickness value.


2018 ◽  
Vol 4 (2) ◽  
pp. 1 ◽  
Author(s):  
Angelica Campigotto ◽  
Stephane Leahy ◽  
Ayan Choudhury ◽  
Guowei Zhao ◽  
Yongjun Lai

A novel, inexpensive, and easy-to-use strain sensor using polydimethylsiloxane (PDMS)  was developed. The sensor consists of a microchannel that is partially filled with a coloured liquid and embedded in a piece of PDMS. A finite element model was developed to optimize the geometry of the microchannel to achieve higher sensitivity. The highest gauge factor that was measured experimentally was 41. The gauge factor was affected by the microchannel’s square cross-sectional area, the number of basic units in the microchannel, and the inlet and outlet configuration. As a case study, the developed strain sensors were used to measure the rotation angle of the wrist and finger joints.


2018 ◽  
Vol 22 (3) ◽  
pp. 613-625 ◽  
Author(s):  
M Anbarasu ◽  
M Venkatesan

This work reports numerical results concerning the cold-formed steel built-up I-section columns composed of four U-profiles under axial compression. A finite element model is developed by using the software program ABAQUS. The developed model includes geometric, material nonlinearities and geometric imperfections. The finite element model was verified against the experimental results reported in the cold-formed steel built-up open section columns. In the parametric study, the sections are analysed with several cross-sectional dimension ratios and lengths, in order to assess their influence on the buckling behaviour and ultimate strength of cold-formed steel built-up I-section columns. After presenting and discussing the numerical parametric results, the article shows that the current direct strength method in the North American Specification for cold-formed steel compression members design curve fails to predict adequately the ultimate strength of some of the columns analysed and addresses the modification proposed on current direct strength method curves, providing improved predictions of all the numerical ultimate strength available. The proposed method is also assessed by reliability analysis.


Author(s):  
Mohammad S. Davoud ◽  
Xiaomin Deng

Predictions of transient temperature distributions in welding can help the selection of welding process parameters that minimize residual stresses. A three-dimensional (3D) thermal finite element model of bead-on-plate gas metal are welding (GMAW) is presented and is used to evaluate a cross-sectional, two-dimensional (2D) counterpart model. While the thermomechanical problem of welding is 3D in nature, it is shown that the 2D model can provide temperature field predictions comparable to those of the 3D model, even though the 2D model tends to predict peak temperatures higher than those of the 3D model. Both types of model predictions are compared to welding test measurements.


2007 ◽  
Vol 344 ◽  
pp. 637-644 ◽  
Author(s):  
Gerd Sebastiani ◽  
Alexander Brosius ◽  
Werner Homberg ◽  
Matthias Kleiner

Sheet Metal Spinning is a flexible manufacturing process for axially-symmetric hollow components. While the process itself is already known for centuries, process planning is still based on undocumented expertise, thus requiring specialized craftsmen for new process layouts. Current process descriptions indicate a vast scope of different dynamic influences while the underlying mechanical model uses a simple static approach. Thus, a 3D Finite Element Model of the process has been set up at IUL in order to analyze the process in detail, providing online as well as cross sectional data of the specimen formed. Within the scope of this article, the results of the above mentioned Finite Element Analysis (FEA) are presented and discussed with respect to the qualitative stress distributions introduced in the existing theoretical models. Main emphasis of this paper is set on a discussion of the qualitative stress distribution, which is, to the current state, only known in theory.


Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 504 ◽  
Author(s):  
Han-Kai Hsu ◽  
Jong-Ning Aoh

The mechanism of the position-mode side guide in correcting slab centerline profile and camber in the roughing process of a hot strip mill (HSM) was analyzed using finite element simulation. The finite element model was established based on the actual size of the roughing mill and on the actual actuating time sequence of the roughing mill in China Steel Corporation (CSC), Kaohsiung. This work could be the first to give an insight into the mechanism of side guides in correcting the slab camber. Time sequence analysis was explored to visualize the progress of centerline profile variation and the interaction between the slab and the related roughing mill components at different moments. The history of reaction forces exerted on the slab was analyzed to explain the interaction between roughing mill components and the slab. The effect of the separation distance of side guide and the effect of the slab wedge on the centerline profile was investigated. A schematic model illustrating the reactions and the resulting moments exerted on the slab was created. By examining the force history, the cross-sectional strain/stress distribution, and the roll force across the horizontal roller, the correcting mechanism of the side guide could be elucidated. The simulation results provide further knowledge in selection and dimension design of side guide to improve the effectiveness of side guide in correcting the slab profile.


2013 ◽  
Vol 21 (5) ◽  
pp. 493-500 ◽  
Author(s):  
Matthias Lerch ◽  
Nelly Weigel ◽  
Henning Windhagen ◽  
Max Ettinger ◽  
Fritz Thorey ◽  
...  

2011 ◽  
Vol 217-218 ◽  
pp. 101-106
Author(s):  
Zhi Ping Yin ◽  
Jiong Zhang ◽  
Jin Guo ◽  
Qi Qing Huang

The finite element software ANSYS was employed to create a finite element model of the cracked wing beam integrated structure, and the stress field of the crack tip was got by the material nonlinearity (elastic-plastic) analysis method. Based on the maximum tensile stress theory criteria, the crack deflection angle was obtained. The crack deflection angles with different geometry parameters (crack length, wed thickness, the height-thickness ratio of the stringer, cross-sectional area, and the location of the stringer) of the wing beam integrated structure were calculated and compared with each other. So the influences of the geometry parameters of the wing beam integrated structure on the crack deflection were studied. The crack deflection angles obtained in elastic analyzing and elastic-plastic analyzing were compared to investigate the effects of the material property on the crack deflection angle.


Sign in / Sign up

Export Citation Format

Share Document