Bond-Slip Relation of Plain Steel Bar in Concrete with Machine-Made Sand

2012 ◽  
Vol 238 ◽  
pp. 142-146 ◽  
Author(s):  
Shun Bo Zhao ◽  
Xin Xin Ding ◽  
Chang Yong Li

To meet the requirement of machine-made sand application in concrete structures, experimental studies were carried out on the bond of plain steel bar with Machine-made Sand Concrete (MSC) by the central pull-out test method. Three specimens were cast as one group, 14 groups were tested considering the influence of concrete strength, bond length and stone powder content in machine-made sand. Based on the experimental research, the characteristic values of bond-slip curve such as the initial-slip and ultimate bond stresses with corresponding slips are statistically analyzed, the bond-slip constitutive relations between plain steel bar and MSC were obtained.

2013 ◽  
Vol 438-439 ◽  
pp. 20-24
Author(s):  
Feng Lan Li ◽  
Ke Fei Yu ◽  
Xin Xin Ding ◽  
Chang Ming Li

To meet the requirement of machine-made sand application in concrete structures, it is necessary to understand the bond properties of steel bar with machine-made sand concrete (MSC). Therefore, the experimental studies were carried out on the bond of plain steel bar with MSC by the central pull-out test method. Three specimens were cast as one group, 6 groups were tested considering the changes of strength grade of MSC and ordinary concrete. The bond-slip curves were measured and analyzed. The results show that the bond slip begins at the tensile side and transfers gradually to the free end before the entire slip turns up along the interface of plain steel bar and surrounded concrete, the largest average bond stress, i. e. the bond strength of plain steel bar corresponds to the initial entire slip of plain steel bar. With the increasing strength grade of MSC and ordinary concrete, the difference of slip at tensile side and free end becomes greater. Comparing that only appears in ordinary concrete with higher strength, the larger slips turn up while the bond stress reaches the largest for the plain steel bar in MSC. Larger scatter of bond strength is between specimens in the same group. Some plain steel bars yields with the beginning of entire slip along the interface.


2011 ◽  
Vol 250-253 ◽  
pp. 1651-1656 ◽  
Author(s):  
Qing Feng Huang ◽  
Da Fu Wang

By a static and repeated pull-out experiment between steel bar and recycled aggregate concrete, and bond-slip curves between recycled concrete with different recycled coarse aggregate(RCA) replacement percentages were recorded. Based on the analysis of the experimental results, replacement percentages of recycled concrete, cover thickness, anchorage length, concrete strength and loading method was investigated. At last, the bond-slip constitutive relation was also discussed.


2012 ◽  
Vol 238 ◽  
pp. 176-180
Author(s):  
Shun Bo Zhao ◽  
Xin Xin Ding ◽  
Shi Ming Liu

Based on the experimental studies, finite element models were built using ANSYS software to simulate the bond properties of steel bars in machine-made-sand concrete (MSC), which considered the nonlinear bond behavior of interface between steel bar and MSC. The concrete strength and the bond length of steel bar are considered as the main parameters for calculation. The complete bond-slip curves of plain and deformed steel bars are well simulated comparing those obtained from the experimental studies. The study gives an theoretical method to analyze the bond properties of steel bar in MSC.


2002 ◽  
Vol 29 (2) ◽  
pp. 191-200 ◽  
Author(s):  
M Alavi-Fard ◽  
H Marzouk

Structures located in seismic zones require significant ductility. It is necessary to examine the bond slip characteristics of high strength concrete under cyclic loading. The cyclic bond of high strength concrete is investigated under different parameters, including load history, confining reinforcement, bar diameter, concrete strength, and the rate of pull out. The bond strength, cracking, and deformation are highly dependent on the bond slip behavior between the rebar and the concrete under cyclic loading. The results of cyclic testing indicate that an increase in cyclic displacement will lead to more severe bond damage. The slope of the bond stress – displacement curve can describe the influence of the rate of loading on the bond strength in a cyclic test. Specimens with steel confinement sustained a greater number of cycles than the specimens without steel confinement. It has been found that the maximum bond strength increases with an increase in concrete strength. Cyclic loading does not affect the bond strength of high strength concrete as long as the cyclic slip is less than the maximum slip for monotonic loading. The behavior of high strength concrete under a cyclic load is slightly different from that of normal strength concrete.Key words: bond, high strength, cyclic loading, bar spacing, loading rate, failure mechanism.


2021 ◽  
Vol 72 (4) ◽  
pp. 498-509
Author(s):  
Vuong Doan Dinh Thien ◽  
Hung Nguyen Thanh ◽  
Hung Nguyen Dinh

Corrosion of the steel reinforcement bars reduces the area of the steel bar and the bond stress between the steel bars and around concrete that decreases the capacity of concrete structures. In this study, the bond stress between steel bar with a diameter of 12mm and concrete was examined with the effect of different corrosion levels and different concrete grades. A steel bar was inserted in a concrete block with a size of 20×20×20cm. The compressive strength of concrete was 25.6MPa, 35.1MPa, and 44.1MPa. These specimens were soaked into solution NaCl 3.5% to accelerate the corrosion process with different corrosion levels in the length of 60mm. The pull-out test was conducted. Results showed that the bond strength of the corroded steel bar was higher than that predicted from CEB-FIP. Slip displacement and the range of slip displacement at the bond strength were reduced when the concrete compressive strength was increased. The rate of bond stress degradation occurred faster with the increment of the corrosion level when the concrete compressive strength was increased.


2011 ◽  
Vol 94-96 ◽  
pp. 970-974
Author(s):  
Xian Rong ◽  
Peng Cheng Liu ◽  
Xue Li

The factors on mechanical anchoring performance of HRB500 steel bars, such as concrete strength, concrete cover thickness, diameter of steel bar, anchorage length of steel bar and transverse reinforcement ratio, were studied based on pull-out tests of 45 specimens. And the formula of mechanical anchoring bond strength for HRB500 steel bars was concluded by statistical regression analysis method. Through the reliability analysis, the mechanical anchoring length of design value and the table of conversion ratio between mechanical and direct anchoring length of HRB500 steel bars have been proposed. So it could be used as a basis for practical projects. The results indicate that the mechanical anchorage length of HRB500 steel bars can be still designed with the formula proposed in GB 50010-2002 “Code for design of concrete structures”.


2021 ◽  
Vol 30 (3) ◽  
Author(s):  
Kexin Zhang

The pull-out test of the bar and PUC is carried out in this paper, the effects of protective layer thickness, reinforcement anchorage length, diameter and shape of reinforcement on bonding properties were studied. The results show that the bond strength between reinforcement and PUC material increases with the increase of the thickness of the protective layer, but decreases with the increase of the anchorage length and diameter of reinforcement. The bond strength of bare round steel is significantly lower than that of ribbed steel, and the maximum bond strength is about 47.4% of ribbed steel. By analyzing the bond slip curve obtained from the pull-out test, the stress process of bond anchorage between reinforcement bar and PUC material is mainly summarized into three stages: the rising stage, the falling stage and the residual stage. The characteristics of the curve, the stress process and the failure mode of specimen at each stage are analyzed.


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3517 ◽  
Author(s):  
Li Song ◽  
Fulai Qu ◽  
Guirong Liu ◽  
Shunbo Zhao

The present study concerns the bond behavior of steel bar in concrete under a water environment. This topic was put forward because of the changes of concrete under a water environment and the importance of reliable anchorage of steel bar for reinforced concrete structures. Thirty bond specimens with deformed steel bars were immersed in water and experimentally studied by pull-out tests. The soaking time from 28 day to 360 day and the cubic compressive strength of concrete with 20 N/mm2 and 40 N/mm2 were considered as the main parameters. The results indicate that the moisture content, compressive strength, and splitting tensile strength of concrete are affected by the water environment; the splitting tensile strength varies almost linearly with the compressive strength of concrete; and the descent portion of the bond–slip curve dropped slowly owing to the confinement of stirrups. On the basis of the test data, the formulas for the prediction of bond strength, residual strength, and the corresponding slips with different soaking time are proposed. Finally, the constitutive relation of bond–slip with two portions in the water environment is established with good agreement with the experimental bond–slip curves.


Author(s):  
Moochul Shin ◽  
Hailing Yu

This numerical study focuses on evaluating the structural performance of prestressed concrete prisms with larger diameter (0.315 in) prestressing wires. More commonly used prestressing wires are the 0.209 in (5.32 mm) diameter wires for prestressed concrete crossties. However, there has been an interest to adopt larger diameter prestressing wires in order to provide higher prestress forces with the aim of mitigating the structural damage of prestressed concrete crossties. Previous experimental studies demonstrated that small-scale pretensioned concrete prisms had excellent correlation in bonding performance of concrete ties pretensioned with 0.209 in (5.32 mm) wires or three- or seven-wire strands. Using a finite element (FE) modeling approach, this study investigates the effects of 8 mm diameter prestressing wires on the splitting/bursting performance of prisms at the onset of de-tensioning of the wires. The studied parameters include geometrical/mechanical parameters such as thickness of the concrete cover, spacing between the wires, level of prestress forces, and concrete release strength in compression. Cohesive elements with a newly developed nonlinear bond-slip model are assigned to the interface between the prestressing wires and the surrounding concrete. The parameters for the bond-slip model are calibrated based on a simple pull-out test on concrete cylinders with the 0.315 in (8 mm) diameter wires. The simulation results are compared with the predicted splitting performance of prisms pretensioned with 0.209 in (5.32 mm) wires or seven-wire strands. Based on the FE analysis results, recommendations are made on the minimum concrete cover thickness and wire spacing required to achieve acceptable splitting/bursting performance in prestressed concrete prisms.


2011 ◽  
Vol 255-260 ◽  
pp. 3129-3132
Author(s):  
Xin Liang Jiang ◽  
Quan Bin Zhao

The study on bond-slip performance at the interface of concrete frames-fiber plasterboard (CFFP) is very significant to perfect the theory of CFFP and the FEM analytical models. The pull-out experiment on eight CFFP from three series does research on the effect of concrete strength and the interface length on the interfacial bond strength of fiber plasterboard and core column concrete. The experiment of CFFP is well-designed to obtain the curve of bond-slip constitutive relationship.


Sign in / Sign up

Export Citation Format

Share Document