The Application of FLAC Software in Stability Analysis of Highway Slope Reinforced by Prestressed Anchor Cable

2012 ◽  
Vol 241-244 ◽  
pp. 2158-2162
Author(s):  
Hui Min Wang ◽  
Liang Cao ◽  
Ji Yao ◽  
Ze Li

rigid limit equilibrium method and numerical simulation of FLAC software based on strength reduction method was used in this paper, and the stability of a highway slope before and after the reinforcement by prestressed anchor cable was analyzed. The calculation results showed that, the stability of designed excavated slope could not meet the requirements, while the stability of reinforced sloped by prestressed anchor cable could. The sliding surface of the slope and the corresponding stability factor could be obtained in two ways, but the numerical simulation of FLAC software considered the material deformation, so the calculation results was smaller than the results of rigid limit equilibrium method.

2012 ◽  
Vol 424-425 ◽  
pp. 1187-1190
Author(s):  
Yue Zhai ◽  
Kun Long Yin

With the anti-shear parameters reduction, the nonlinear strength reduction FEM model of slope turns to unstable status and the numerical non-convergence occurs simultaneously. Hence, the safety stability factor obtained based on c-φ reduction algorithm can be regarded as equal to stability factor obtained using limit equilibrium method. In this paper, stability analysis of one reservoir slope is made and the calculation results show that the strength reduction method matches the traditional grid limit equilibrium method well, yet with much more available information. Efficient and accurate, the strength reduction FEM is feasible to examine slope stability and analyze slope movement patterns.


2013 ◽  
Vol 671-674 ◽  
pp. 245-250
Author(s):  
Wen Hui Tan ◽  
Ya Liang Li ◽  
Cong Cong Li

At present, in-situ stress was not considered in Limit Equilibrium Method (LEM) of slopes, the influence of in-situ stress is very small on the stability of conventional slopes, but in deep-depressed open-pit mines, the influence should not be neglected. Formula for calculating the Factor of Safety (FOS) under the effect of horizontal in-situ stress was deduced using General Slice Method (GSM) of two-dimensional (2D) limit equilibrium method in this paper,a corresponding program SSLOPE was built, and the software was used in a deep- depressed open-pit iron mine. The results show that the FOS of the slope decreased by 20% when horizontal in-situ stress is considered, some reinforcements must be taken. Therefore, the influence of in-situ stress on slope stability should be taken into account in deep open –pit mines.


1983 ◽  
Vol 20 (4) ◽  
pp. 661-672 ◽  
Author(s):  
R. K. H. Ching ◽  
D. G. Fredlund

Several commonly encountered problems associated with the limit equilibrium methods of slices are discussed. These problems are primarily related to the assumptions used to render the inherently indeterminate analysis determinate. When these problems occur in the stability computations, unreasonable solutions are often obtained. It appears that problems occur mainly in situations where the assumption to render the analysis determinate seriously departs from realistic soil conditions. These problems should not, in general, discourage the use of the method of slices. Example problems are presented to illustrate these difficulties and suggestions are proposed to resolve these problems. Keywords: slope stability, limit equilibrium, method of slices, factor of safety, side force function.


2014 ◽  
Vol 988 ◽  
pp. 371-376
Author(s):  
Nian Qin Wang ◽  
Qing Tao Wang ◽  
Qi Pang ◽  
Qian Xue

Based on the theory of limit equilibrium, by the GEO-SLOPE software,analyzed the stability before and after reinforcement of a high Loess-bedrock slope. The results and conclusions show: (1)Analyzed and Optimized the high Loess-bedrock slope through SLOPE/W module, optimizing the engineering quantity of the anchor cable frame in the local and saving the investment; (2)When taken reinforcement measures, conducted the SLOPE/W model again, the stability coefficient is 1.459, the effect testified by projects is obvious; (3)Aiming at the optimization analysis, proposed countermeasures system, with reference for reinforcement of a high Loess-bedrock slope.


2013 ◽  
Vol 405-408 ◽  
pp. 576-579
Author(s):  
Yong Hua Cao ◽  
Chuan Zhi Huang

The reliability theory based analysis is more advanced and reasonable compared with the traditional methods for slope stability analysis. Limit equilibrium method is usually used to evaluate the stability of a slope. In this paper, a new reliability analysis method is obtained based on JC method and multi sliding surface method which a new limit equilibrium method developed by Huang. Then, this new method is applied for a wharf slope. The sliding surface get from the safety factor is not the same as that from reliability index though they are close to each other. The safety factor or reliability index get from Fellenius method is smaller than that from other method. The safety factor or reliability index get from multi sliding surface method is close to that from Bishops method. The reliability index can be more reasonable after the standard deviation of the soil property index is deduced with random field theory.


2012 ◽  
Vol 166-169 ◽  
pp. 2535-2538
Author(s):  
Ke Wang ◽  
Chang Ming Wang ◽  
Fang Qi ◽  
Cen Cen Niu

The traditional limit equilibrium method in the analysis of slope stability not only exists some subjective empirical hypothesis that can not meet the equilibrium of force and moment, but also ignores the effects of internal stress and strain on the slope stability. Furthermore, in the stability of the slope evaluation, limit equilibrium method relies too much on experience when hypothesizing the slope slip surface. So that it makes deviation on slope analysis and stability evaluation. This paper is based on simplified Bishop method used to establish the model of slope stability analysis. And it used genetic algorithms to solve the minimum safety factor and the most dangerous slip surface of slope. It was the arithmetic which simulates organisms genetic evolutionary process and it avoided the traditional methods falling into the local extreme value point easily and error propagation leading to convergence. The algorithm had advantages of higher accuracy, quick convergence and applicability. It showed that the genetic algorithm is accurate and reliable in the analysis of slope stability.


2013 ◽  
Vol 671-674 ◽  
pp. 180-185
Author(s):  
Qing Wang ◽  
Lei Hua Yao ◽  
Ning Zhang

Xiufengsi Landslide is an ancient landslide in Wushan County, Chongqing, China. Under natural condition, this landslide is stable. Due to the Three Gorges Reservoir, however, the water level in this region fluctuates within the range of [145 m, 175 m], periodically. Furthermore, an increasing number of residential quarters have been built on this landslide that also increase the possibility of occurrences of the landslide. Motivated by the government’s desire to take measures in control the landslide, we use two approaches to study the stability of this landslide. Under different computational conditions, the safety factors of the landslide are calculated by using limit equilibrium method and finite element method, respectively. Based on the comparison of the results, the stability of the landslide is analyzed more objectively and comprehensively. This work also lends insight into the landslide forecast.


2012 ◽  
Vol 249-250 ◽  
pp. 1099-1102
Author(s):  
Yi Sheng Huang ◽  
Jian Lin Li

Amending the normal stress over the slip surface based on the stress field by numerical analysis, applying the three-dimensional global limit equilibrium method to the stability analysis of tension-slackened rock mass in the right bank of Yagen hydropower station. Stability analysis shows that if do not take any measures, the loose rock mass stability can cater to the Specification demand, but some small sliders is in the limit state under the water and earthquake condition, if use the cutting slope and unloading scheme, the whole loose rock mass and the all small sliders can meet the Specification standard stability requirements.


Sign in / Sign up

Export Citation Format

Share Document