Construction Technology of Cangyuan Tunnel of LanYu Railway

2012 ◽  
Vol 256-259 ◽  
pp. 1291-1295
Author(s):  
Su Qi ◽  
Ye Zhang ◽  
Shu Hao Liu ◽  
Nian Liu

The phenomenon of railway and road tunnel passing through the debris flow gully is more and more prevalent, for the rapid development of the construction of railways and highways. At present, the construction experience of tunnels passing through the debris flow gully is not rich enough, so the study on this part is necessary. The engineering geological conditions of Cangyuan Tunnel are complex and the construction of which is difficult. The three-step seven-step method, tunnel surface grouting and tunnel root piles reinforcement basis are used to ensure the stability of the tunnel surrounding rock, based on the characteristics of Cangyuan Tunnel which passes through the debris flow gully. The deformation is controlled within the specification range, which indicates that the construction effect of Cangyuan Tunnel is good. These construction measures solve the construction problems of tunnels which pass through the debris flow gully and ensure project quality and duration, therefore, these construction measures can be used in similar projects.

2014 ◽  
Vol 580-583 ◽  
pp. 1327-1330
Author(s):  
Ling Ling Cai ◽  
Xiu Yuan Yang ◽  
Ning Guo

When crossing difficult terrain or extreme regional geological conditions encountered, there are difficulties in laying road routes, the spacing between two adjacent tunnels is limited. Neighborhood tunnel is a form of tunnel structure between separate and arch ones, less affected by the topography. It is more conveniently and easier to control the cost. Surrounding rock deformation mechanism with construction of three-step method is more complex, and therefore a reasonable means of construction technology and support is essential. Taking a certain neighborhood tunnel highway engineering background, aimed to provide guidance for follow-up monitoring and support, we use numerical simulation software FLAC3D on three-step method excavation construction. Rational creep analysis of geotechnical model and calculation parameters is selected. It helps to calculation and analysis the mechanical response of tunnel surrounding rock characteristics and clarify the tendency of displacement and stress fields.


2019 ◽  
Vol 136 ◽  
pp. 04023
Author(s):  
Ming Zhao ◽  
Ke Li ◽  
Hong Yan Guo ◽  
KaiCheng Hua

Based on the special geological conditions of a tunnel in Qingyuan section of Huizhou-Zhanzhou Expressway, FLAC3d numerical simulation software is used to simulate the rheological properties and instability of surrounding rock in large-section fully weathered sandstone section, and the stability and loss of surrounding rock are analyzed. The deformation of the dome and the face at steady state is analyzed. It is found that: 1) when the surrounding rock is in a stable state, the deformation curve of the dome is smooth. When the surrounding rock of the face is unstable, the front of the face appears ahead. Deformation should be first strengthened on the surrounding rock in front of the face. 2) The arched foot is an important part of the instability of the surrounding rock. In order to prevent the expansion of the collapsed part, the arched part should be reinforced. 3) In order to obtain the limit state of surrounding rock stability, the strength of surrounding rock is reduced, and the strength reduction coefficient corresponding to the displacement sudden point is taken as the safety factor of rock stability around the hole, and the stability safety coefficients of surrounding rock of each construction step are greater than 1.2. 4) The dynamic standard values of deformation control in the whole construction stage are obtained by analyzing the deformation curves of each data monitoring point with time in the corresponding time period of each construction step.


2011 ◽  
Vol 243-249 ◽  
pp. 3530-3537
Author(s):  
Zu Song Wu ◽  
Guang Qi Chen ◽  
Kou Ki Zen ◽  
Xin Rong Liu

When the road tunnel is excavated, the multi lining is used to being applied. In order to keep the surrounding rock stabilize and arouse the self-stability of the surrounding rock, building the first support is essential. But the slabbing often occurs near the spring line on the surface of the first lining, and because the slabbling is a common failing and not attracted our most attentions, it will develop to the crack and threaten the stability of the structure finally. This paper uses the line elastic method to analyze the mechanics that causes this slabbing phenomenon via the interaction between the surrounding rock and the first lining, and suggests the measure that escape the slabbing.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Rui Wang ◽  
Yiyuan Liu ◽  
Xianghui Deng ◽  
Yu Zhang ◽  
Xiaodong Huang ◽  
...  

With the rapid development of tunnel construction in China, deep buried and long tunnel projects are emerging in areas with complex engineering geological conditions and harsh environment, and thus large deformation of tunnels under conditions of high in situ stress and soft rock becomes increasingly prominent and endangers engineering safety. Therefore, it is of great significance to control the deformation and improve the stability of surrounding rock by analyzing the thickness and distribution law of loose circle according to the unique mechanical properties and failure mechanism of surrounding rock of large deformation soft-rock tunnel. Based on unified strength theory, this paper deduces the radius calculation formula of the loose circle by considering the influence of intermediate principal stress. Furthermore, the theoretical calculations and field tests of the loose circle in the typical sections of grade II and III deformation of Yuntunbao tunnel are carried out, and the thickness and distribution law of loose circle of surrounding rock of large deformation soft-rock tunnel is revealed. The results show that the formula based on the unified strength criterion is applicable for a large deformation tunnel in soft rock.


2012 ◽  
Vol 164 ◽  
pp. 414-417
Author(s):  
Jia Ming Han

Commonly used finite element strength reduction to calculate the safety factor of slope,to analyze the stability of the slope[1~3]. Recently it also proposed the methods to evaluate the safety factor for the stability of surrounding rock of underground chambers and supporting structural mechanics[4~6]. For Qinling Mountains of the complex geological conditions in the Maanziliang highway tunnel, this article use the finite element method from the bolt resist tension, bolt length, the force of sprayed layer of concrete to computing gradeⅤsurrounding rock section of primary support safety factor, to give evaluation to support mechanics of the Maanziliang tunnel.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Junwen Zhang ◽  
Yulin Li

There are series of problems faced by most of the coal mines in China, ranging from low-coal recovery rate and strained replacement of working faces to gas accumulation in the upper corner of coalfaces. Based on the gob-side entry retaining at the No. 18205 working face in a coal mine in Shanxi Province, theoretical analysis, numerical simulation, and engineering practice were comprehensively used to study the mechanical characteristics of the influence of the width of the filling body beside the roadway and the stability of surrounding rock in a high-gas-risk mine. The rational width of the filling body beside the roadway was determined, and a concrete roadway-side support with a headed reinforcement-integrated strengthening technique was proposed, which have been applied in engineering practice. The stability of the filling body beside the roadway is mainly influenced by the movement of the overlying rock strata, and the stability of the surrounding rock can be improved effectively by rationally determining the width of the filling body beside the roadway. When the width of the roadway-side filling body is 2.5 m, the surrounding rock convergence of the gob-side entry retaining is relatively small at only 5% of the convergence ratio. It has been shown that the figure for roof separation is relatively low, and strata behaviors are relatively alleviated and gas density do not exceed the limit, which are the best results of gob-side entry retaining. The results of this research can provide theoretical guidance for excavation of coal mines with similar geological conditions and have some referential significance to safety and efficient production in coal mines.


2014 ◽  
Vol 638-640 ◽  
pp. 798-803
Author(s):  
Yong Tao Zhang

As the excavation of tunnels, there are new channels of the groundwater drainage. The original supply of the circulatory system has been destroyed. The effects of groundwater to rock mass of surrounding rock are aggravated. In this paper, combined with a new highway tunnel project, the model is built according to the design parameters and the site engineering geological conditions of the tunnel. The fluid-structure interaction module of the finite difference software FLAC3D is used for the research on tunnel excavation. The distribution of seepage field, the stability of surrounding rock and rock deformation under saturated conditions during the tunnel excavation have been analyzed. The simulation results have certain guiding meaning on fracture development, the stability design of tunnels in water-rich stratum and the design and construction of anti-drainage.


2013 ◽  
Vol 838-841 ◽  
pp. 889-893
Author(s):  
Biao Li ◽  
Feng Dai ◽  
Nu Wen Xu ◽  
Chun Sha

The right bank underground powerhouse of Houziyan hydropower station is a typical deep-buried type with high geostress and complicated geological conditions. To monitor and analyze the stability of surrounding rock mass during continuous excavation of the powerhouse excavation and locate the potential failure zones, an ESG (Engineering Seismology Group) microseismic monitoring system manufactured in Canada was installed in April, 2013. The wave velocity of the monitoring system was determined through fixed blasting tests. And the average location error is the minimum while P-wave velocity is 5700m/s, less than 10m and meeting the system request. By combining the temporal and spatial distribution regularity of microseimic events with field excavation, micro-crack clusters and potential instability zones were identified and delineated. The results will provide a reference for later excavations and supports of the underground powerhouse. Furthermore, a new monitoring method can also be supplied for the stability analysis of surrounding rock mass in deep-buried underground powerhouses.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Shijie Chen ◽  
Ming Xiao ◽  
Juntao Chen

A numerical analysis method for block failure is proposed that is based on continuum mechanics. First, a mesh model that includes marked blocks was established based on the grid-based block identification method. Then, expressions of the contact force under various contact states were derived based on the explicit contact force algorithm, and a contact simulation method between blocks and the surrounding rock was proposed. The safety factors of the blocks were calculated based on the strength reduction method. This numerical analysis method can simulate both the continuous deformation of the surrounding rock and the discontinuous failure processes of the blocks. A simple example of a sliding block was used to evaluate the accuracy and rationality of the numerical method. Finally, combined with a deep underground excavation project under complex geological conditions, the stability of the blocks and rock were analyzed. The results indicate that the key blocks are damaged after excavation, the potentially dangerous blocks loosen and undergo large deformations, and the cracks between the blocks and the rock gradually increase as the excavation proceeds. The safety factors of the blocks change during the excavation. The numerical results demonstrate the influence of the surrounding rock on the failure process and on the stability of the blocks, and an effective analysis method is provided for the stability analysis of blocks under complex geological conditions.


2012 ◽  
Vol 170-173 ◽  
pp. 1816-1819
Author(s):  
Ye Min Zhang ◽  
Wen Jian Li ◽  
Jin Cai Li

Abstract. In jiangxi red XiaShan highway tunnel interval for engineering background, the key research different scheme for tunnel construction process between them the mechanical behavior of rock and analyzed. For small interval double hole parallel tunnel between them the complex rock stress state, the finite element analysis software for using the numerical analysis method is buried deep in the condition of small interval period of bias by different construction scheme of tunnel numerical simulation. To meshshotcreting firstly method, CD method, up and down steps method, the construction method of different displacement and deformation of the stability of surrounding rock and the comparative analysis. Analyze the different schemes of before and after the surrounding rock tunnel excavation and supporting structure composed of each other of the unity displacement change rule. Put forward the tunnel between them weak rock the concept, more explicit the engineering geological conditions of weak rock tunnel clip to control surfaces. And on the basis of guidance for engineering construction, in actual construction which has obtained a better effect. The result is of a similar project design and construction to provide the reference and the model.


Sign in / Sign up

Export Citation Format

Share Document