Gridless Adaptive Method for Simulating Unsteady Flows with Moving Shocks

2012 ◽  
Vol 271-272 ◽  
pp. 948-952
Author(s):  
Sai Hu Pu

In this paper, the gridless adaptive method is extended to simulate unsteady flows with moving shocks. In order to capture physical features like moving shocks with local high resolution, a technique of dynamic cloud of points is achieved by adopting clouds refinement and clouds coarsening procedures during the evolution of the unsteady flows. The regions for clouds refinement and clouds coarsening are determined at every time step by an indicator, which is defined as a function of the local pressure gradient. Once the regions of cloud of points to be adjusted are located by the indicator, the clouds refinement is carried out by introducing new points based on the existing structure of cloud of points, and the clouds coarsening procedure is also implemented simultaneously in order to control the size of the points distributed in the whole computational domain. The numerical test cases show that the gridless adaptive method presented can capture moving shocks with high resolution successfully in both inviscid and viscous test cases.

2014 ◽  
Vol 24 (08) ◽  
pp. 1495-1539 ◽  
Author(s):  
Francesco Bassi ◽  
Lorenzo Botti ◽  
Alessandro Colombo

In this work we consider agglomeration-based physical frame discontinuous Galerkin (dG) discretization as an effective way to increase the flexibility of high-order finite element methods. The mesh free concept is pursued in the following (broad) sense: the computational domain is still discretized using a mesh but the computational grid should not be a constraint for the finite element discretization. In particular the discrete space choice, its convergence properties, and even the complexity of solving the global system of equations resulting from the dG discretization should not be influenced by the grid choice. Physical frame dG discretization allows to obtain mesh-independent h-convergence rates. Thanks to mesh agglomeration, high-order accurate discretizations can be performed on arbitrarily coarse grids, without resorting to very high-order approximations of domain boundaries. Agglomeration-based h-multigrid techniques are the obvious choice to obtain fast and grid-independent solvers. These features (attractive for any mesh free discretization) are demonstrated in practice with numerical test cases.


2018 ◽  
Vol 11 (12) ◽  
pp. 5173-5187 ◽  
Author(s):  
Nicholas Szapiro ◽  
Steven Cavallo

Abstract. A new free modular software package is described for tracking tropopause polar vortices (TPVs) natively on structured or unstructured grids. Motivated by limitations in spatial characterization and time tracking within existing approaches, TPVTrack mimics the expected dynamics of TPVs to represent their (1) spatial structure, with variable shapes and intensities, and (2) time evolution, with mergers and splits. TPVs are segmented from the gridded flow field into spatial objects as restricted regional watershed basins on the tropopause, described by geometric metrics, associated over time by overlap similarity into major and minor correspondences, and tracked along major correspondences. Simplified segmentation and correspondence test cases illustrate some of the appeal, sensitivities, and limitations of TPVTrack, including effective representation of spatial shape and reduced false positive associations in time. Tracked TPVs in more realistic historical conditions are consistent in bulk with expectations of life cycle and mean structure. Individual tracks are less reliable when discriminating among multiple overlaps. Modifications to track other physical features are possible, with each application requiring evaluation.


10.14311/1829 ◽  
2013 ◽  
Vol 53 (4) ◽  
Author(s):  
Michal Kuráž ◽  
Petr Mayer

This paper presents several algorithms that were implemented in DRUtES [1], a new open source project. DRUtES is a finite element solver for coupled nonlinear parabolic problems, namely the Richards equation with the dual porosity approach (modeling the flow of liquids in a porous medium). Mass balance consistency is crucial in any hydrological balance and contaminant transportation evaluations. An incorrect approximation of the mass term greatly depreciates the results that are obtained. An algorithm for automatic time step selection is presented, as the proper time step length is crucial for achieving accuracy of the Euler time integration method. Various problems arise with poor conditioning of the Richards equation: the computational domain is clustered into subregions separated by a wetting front, and the nonlinear constitutive functions cover a high range of values, while a very simple diagonal preconditioning method greatly improves the matrix properties. The results are presented here, together with an analysis.


2009 ◽  
Vol 23 (03) ◽  
pp. 525-528 ◽  
Author(s):  
TIANHANG XIAO ◽  
HAISONG ANG

As numerical simulation of unsteady flows due to moving boundaries such as flexible flapping-wings is difficult by conventional approaches, an effective strategy which combines mesh deformation based on Delaunay graph mapping and unstructured overset grids is proposed in this paper. A Delaunay graph is generated for each body-fitted grid cluster which overlaps or is embedded within an off-body background grid cluster. At each time step, the graph moves according to the wing's motion and deformation, and the grids move to new positions according to a one-to-one mapping between the graph and the grid. Then, intergrid-boundary definition is implemented automatically for computation.


Author(s):  
MA Ben Souf ◽  
O Bareille ◽  
M Ichchou ◽  
M Haddar

The random dynamic response of periodic structures with model uncertainties is here studied. For that purpose, a nonparametric model of random uncertainties is used. The present approach is based on the maximum entropy principle optimization and is developed to identify the response of linear and nonlinear dynamic systems. This non-parametric probabilistic approach is implemented in combination with the Wave Finite Element. Numerical test cases are used as examples and for validation purpose.


Author(s):  
Sonam Tanwar

This chapter develops a meshless formulation of lattice Boltzmann method for simulation of fluid flows within complex and irregular geometries. The meshless feature of proposed technique will improve the accuracy of standard lattice Boltzmann method within complicated fluid domains. Discretization of such domains itself may introduce significant numerical errors into the solution. Specifically, in phase transition or moving boundary problems, discretization of the domain is a time-consuming and complex process. In these problems, at each time step, the computational domain may change its shape and need to be re-meshed accordingly for the purpose of accuracy and stability of the solution. The author proposes to combine lattice Boltzmann method with a Galerkin meshfree technique popularly known as element-free Galerkin method in this chapter to remove the difficulties associated with traditional grid-based methods.


2017 ◽  
Vol 9 (1) ◽  
pp. 143
Author(s):  
Yirang Yuan ◽  
Luo Chang ◽  
Changfeng Li ◽  
Tongjun Sun

A parallel algorithm is presented to solve three-dimensional slightly compressible seepage displacement where domain decomposition and characteristics-mixed finite element are combined. Decomposing the computational domain into several subdomains, we define a special function to approximate the derivative at interior boundary explicitly and obtain numerical solutions of the saturation implicitly on subdomains in parallel. The method of characteristics can confirm strong stability at the fronts, and can avoid numerical dispersion and nonphysical oscillation. It can adopt large-time step but can obtain small time truncation error. So a characteristic domain decomposition finite element scheme is put forward to compute the saturation. The flow equation is computed by the method of mixed finite element and numerical accuracy of Darcy velocity is improved one order. For a model problem we apply some techniques such as variation form, domain decomposition, the method of characteristics, the principle of energy, negative norm estimates, induction hypothesis, and the theory of priori estimates of differential equations to derive optimal error estimate in $l^2$ norm. Numerical example is given to testify theoretical analysis and numerical data show that this method is effective in solving actual applications. Then it can solve the well-known problem.


2003 ◽  
Vol 125 (1) ◽  
pp. 25-32 ◽  
Author(s):  
W. Ning ◽  
Y. S. Li ◽  
R. G. Wells

A multistage frequency domain (time-linearized/nonlinear harmonic) Navier-Stokes unsteady flow solver has been developed for predicting unsteady flows induced by bladerow interactions. In this paper, the time-linearized option of the solver has been used to analyze unsteady flows in a subsonic turbine test stage and the DLR transonic counter-rotating shrouded propfan. The numerical accuracy and computational efficiency of the time-linearized viscous methods have been demonstrated by comparing predictions with test data and nonlinear time-marching solutions for these two test cases. It is concluded that the development of efficient frequency domain approaches enables unsteady flow predictions to be used in the design cycles to tackle aeromechanics problems.


Author(s):  
Phani Ganesh Elapolu ◽  
Pradip Majumdar ◽  
Steven A. Lottes ◽  
Milivoje Kostic

One of the major concerns affecting the safety of bridges with foundation supports in river-beds is the scouring of river-bed material from bridge supports during floods. Scour is the engineering term for the erosion caused by water around bridge elements such as piers, monopiles, or abutments. Scour holes around a monopile can jeopardize the stability of the whole structure and will require deeper piling or local armoring of the river-bed. About 500,000 bridges in the National Bridge Registry are over waterways. Many of these are considered as vulnerable to scour, about five percent are classified as scour critical, and over the last 30 years bridge failures caused by foundation scour have averaged about one every two weeks. Therefore it is of great importance to predict the correct scour development for a given bridge and flood conditions. Apart from saving time and money, integrity of bridges are important in ensuring public safety. Recent advances in computing boundary motion in combination with mesh morphing to maintain mesh quality in computational fluid dynamic analysis can be applied to predict the scour hole development, analyze the local scour phenomenon, and predict the scour hole shape and size around a pier. The main objective of the present study was to develop and implement a three dimensional iterative procedure to predict the scour hole formation around a cylindrical pier using the mesh morphing capabilities in the STARCCM+ commercial CFD code. A computational methodology has been developed using Python and Java Macros and implemented using a Bash script on a LINUX high performance computer cluster. An implicit unsteady approach was used to obtain the bed shear stresses. The mesh was iteratively deformed towards the equilibrium scour position based on the excess shear stress above the critical shear stress (supercritical shear stress). The model solves the flow field using Reynolds Averaged Navier-Stokes (RANS) equations, and the standard k–ε turbulence model. The iterative process involves stretching (morphing) a meshed domain after every time step, away from the bottom where scouring flow parameters are supercritical, and remeshing the relevant computational domain after a certain number of time steps when the morphed mesh compromises the stability of further simulation. The simulation model was validated by comparing results with limited experimental data available in the literature.


Sign in / Sign up

Export Citation Format

Share Document