Effect of Substrate Temperature on One-Step Magnetron-Sputtered Cu(In,Ga)Se2 Thin Films for Solar Cells

2013 ◽  
Vol 291-294 ◽  
pp. 703-707
Author(s):  
Gui Shan Liu ◽  
Hao Na Li ◽  
Xiao Yue Shen ◽  
Zhi Qiang Hu ◽  
Hong Shun Hao

CIGS thin films were deposited on soda lime glass by one-step magnetron sputtering using a single quaternary-CIGS target in stoichiometric proportions. The influences of substrate temperature on the structural, optical, and electrical properties of Cu(In,Ga)Se2 (CIGS) thin films were investigated. The phase structure of CIGS thin films was characterized by X-ray diffraction (XRD). The morphology and thickness of CIGS thin films were observed by Scanning Electron Microscope (SEM). The absorption coefficient of CIGS thin films was measured by Ultraviolet-visible Spectrophotometer. Four-point probe method was used to test the resistivity of CIGS thin films. Based on the results of characterization, the increase in crystallite size of CIGS was found to be significantly noticeable with increasing substrate temperature. UV-vis measurement analysis suggested that CIGS thin films deposited at different substrate temperatures had high absorption coefficient (~104 cm-1) and optical band gap (1.07-1.23 eV). The substrate temperature dependence of the resistivity of the films indicated that the resistivity of the films fall to about 0.5 Ω۰cm as the substrate glass was heated up to 300 °C.

2001 ◽  
Vol 16 (2) ◽  
pp. 394-399 ◽  
Author(s):  
S. Nishiwaki ◽  
T. Satoh ◽  
Y. Hashimoto ◽  
T. Negami ◽  
T. Wada

Cu(In,Ga)Se2(CIGS) thin films were prepared at substrate temperatures of 350 to 500 °C. The (In,Ga)2Se2 precursor layers were deposited on Mo coated soda-lime glass and then exposed to Cu and Se fluxes to form CIGS films. The surface composition was probed by a real-time composition monitoring method. The CIGS films were characterized by x-ray diffraction, energy dispersive x-ray spectroscopy, secondary ion mass spectroscopy, and atomic force microscopy. The transient formation of a Cu–Se phase with a high thermal emissivity was observed during the deposition of Cu and Se at a substrate temperature of 350 °C. Faster diffusion of In than Ga from the (In,Ga)2Se3 precursor to the newly formed CIGS layer was observed. A growth model for CIGS films during the deposition of Cu and Se onto (In,Ga)2Se3 precursor is proposed. A solar cell using a CIGS film prepared at about 350 °C showed an efficiency of 12.4%.


2002 ◽  
Vol 721 ◽  
Author(s):  
P. Kuppusami ◽  
K. Diesner ◽  
I. Sieber ◽  
K. Ellmer

AbstractSputtering of aluminium doped zinc oxide thin films from a ceramic ZnO:Al target requires a controlled addition of oxygen to the sputtering atmosphere in order to obtain films with low resistivity and high transparency. In this paper the influence of the oxygen addition and of the substrate temperature on the structural, morphological and electrical properties of ZnO:Al films is investigated. The oxygen addition leads to a minimum resistivity when the oxygen content during sputtering is 0.2%. This small amount of oxygen not only improves the transparency of the films, it also induces to a significant grain growth as revealed by scanning electron microscopy. A further increase of the oxygen content leads to highly resistive films, due to a complete oxidation of the dopant Al. As expected, higher substrate temperatures from about 373 to 673 K improve the of crystallinity and hence the resistivity. The lowest resistivity achieved was about 1.2.10-3 Ωcm. At still higher temperatures the resistivity increases which seems to be due to an outdiffusion of sodium into the ZnO:Al films from the soda lime glass, compensating part of the donors.


2009 ◽  
Vol 6 (1) ◽  
pp. 141-149
Author(s):  
Baghdad Science Journal

A polycrystalline CdSe thin films doped with (5wt%) of Cu was fabricated using vacuum evaporation technique in the substrate temperature range(Ts=RT-250)oC on glass substrates of the thickness(0.8?m). The structure of these films are determined by X-ray diffraction (XRD). The X-ray diffraction studies shows that the structure is polycrystalline with hexagonal structure, and there are strong peaks at the direction (200) at (Ts=RT-150) oC, while at higher substrate temperature(Ts=150-250) oC the structure is single crystal. The optical properties as a function of Ts were studied. The absorption, transmission, and reflection has been studied, The optical energy gap (Eg)increases with increase of substrate temperature from (1.65-1.84)eV due to improvement in the structure. The amorphousity of the films decreases with increasing Ts. The films have direct energy gap and the absorption edge was shift slightly towards smaller wavelength for CdSe:Cu thin film with increase of substrate temperature.it was found that the absorption coefficient was decreased with increasing of substrate temperature due to increases the value of(Eg). The CdSe:Cu films showed absorption coefficient in the range (0.94 x104-0.42x104)cm-1at Ts=RT-250 oC. Also the density of state decreases with increasing of substrate temperatures from (0.20-0.07)eV, it is possibly due to the recrystallization by the heating substrate temperatures.. Also the extinction coefficient, refractive index and dielectric constant have been studied.


1995 ◽  
Vol 388 ◽  
Author(s):  
Yoshihisa Watanabe ◽  
Yoshikazu Nakamura ◽  
Shigekazu Hirayama ◽  
Yuusaku Naota

AbstractAluminum nitride (AlN) thin films have been synthesized by ion-beam assisted deposition method. Film deposition has been performed on the substrates of silicon single crystal, soda-lime glass and alumin A. the influence of the substrate roughness on the film roughness is studied. the substrate temperature has been kept at room temperature and 473K and the kinetic energy of the incident nitrogen ion beam and the deposition rate have been fixed to 0.5 keV and 0.07 nm/s, respectively. the microstructure of the synthesized films has been examined by X-ray diffraction (XRD) and the surface morphology has been observed by atomic force microscopy(AFM). IN the XRD patterns of films synthesized at both room temperature and 473K, the diffraction line indicating the alN (10*0) can be discerned and the broad peak composed of two lines indicating the a1N (00*2) and a1N (10*1) planes is also observed. aFM observations for 100 nm films reveal that (1) the surface of the films synthesized on the silicon single crystal and soda-lime glass substrates is uniform and smooth on the nanometer scale, (2) the average roughness of the films synthesized on the alumina substrate is similar to that of the substrate, suggesting the evaluation of the average roughness of the film itself is difficult in the case of the rough substrate, and (3) the average roughness increases with increasing the substrate temperature.


2011 ◽  
Vol 1328 ◽  
Author(s):  
KyoungMoo Lee ◽  
Yoshio Abe ◽  
Midori Kawamura ◽  
Hidenobu Itoh

ABSTRACTCobalt hydroxide thin films with a thickness of 100 nm were deposited onto glass, Si and indium tin oxide (ITO)-coated glass substrates by reactively sputtering a Co target in H2O gas. The substrate temperature was varied from -20 to +200°C. The EC performance of the films was investigated in 0.1 M KOH aqueous solution. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy of the samples indicated that Co3O4 films were formed at substrate temperatures above 100°C, and amorphous CoOOH films were deposited in the range from 10 to -20°C. A large change in transmittance of approximately 26% and high EC coloration efficiency of 47 cm2/C were obtained at a wavelength of 600 nm for the CoOOH thin film deposited at -20°C. The good EC performance of the CoOOH films is attributed to the low film density and amorphous structure.


2015 ◽  
Vol 22 (01) ◽  
pp. 1550009
Author(s):  
YA MING SUN ◽  
DONG LONG ◽  
XIANG CHENG MENG ◽  
ZHONG HUA ◽  
BO LI ◽  
...  

Cu 2 ZnSnS 4 thin films were prepared on soda-lime glass by sulfurization of the Cu / Sn / ZnS precursors. The microstructure, morphology and optical properties of the films were investigated by X-ray diffraction (XRD), Raman scattering (Raman), scanning electron microscopy (SEM) and UV-visible spectrophotometer (UV-Vis). The SEM images of the precursor and the thin films annealed at different temperatures are very different due to their different surface products. The absorption spectrum shifts to high-wave band region with increasing annealing temperatures. The precursor thin film annealed at 500°C for 2 h forms a single CZTS phase with kesterite structure and the bandgap is estimated to be 1.54 eV.


2012 ◽  
Vol 528 ◽  
pp. 214-218
Author(s):  
Han Bin Wang ◽  
Xi Jian Zhang ◽  
Qing Pu Wang ◽  
Xue Yan Zhang ◽  
Xiao Yu Liu

CIGS thin films were prepared by selenization of Cu-In-Ga-Se precursors, as a new method, the effects of selenization temperature on the properties of CIGS thin films were studied. First, Cu-In-Ga-Se precursors were deposited onto Mo-coated soda lime glass by evaporation and sputtering method. Then, precursors were selenized at various temperatures in N2 atmosphere for 120 min to form CIGS thin films. The degree of reaction and morphology of films as a function of selenization temperature were analyzed. By means of field emission scanning electron microscope (SEM) and X-ray diffraction (XRD), it was found that CIGS thin films selenized at 450°C exhibit chalcopyrite phase with preferred orientation along the (112) plane.


2017 ◽  
Vol 2 (1) ◽  
pp. 54-59 ◽  
Author(s):  
Shih-Fan Chen ◽  
Shea-Jue Wang ◽  
Win-Der Lee ◽  
Ming-Hong Chen ◽  
Chao-Nan Wei ◽  
...  

The back contact electrode with molybdenum (Mo) thin film is crucial to the performance of Cu(In, Ga)Se2 solar cells. In this research, Mo thin films were fabricated by direct current sputtering to attain low-resistivity molybdenum films on soda-lime glass substrates with good adhesion. The films were sputtered onto substrates in 500 nm thickness and nominally held at room temperature with deposition conditions of power and working pressure. Low resistivity (17-25 μΩ∙cm) of bi-layer molybdenum thin films were achieved with combination of top layer films deposited at 300 W with different working pressure, and bottom fixing layer film deposited at 300 W with 2.5 mTorr which adhered well on glass. Films were characterized the electrical properties, structure, residual stress, morphology by using the Hall-effect Measurement, X-ray Diffraction, and Field-Emission Scanning Electron Microscopy, respectively, to optimize the deposition conditions.


2007 ◽  
Vol 14 (05) ◽  
pp. 873-878 ◽  
Author(s):  
HYUN KYOUNG YANG ◽  
JONG WON CHUNG ◽  
BYUNG KEE MOON ◽  
BYUNG CHUN CHOI ◽  
JUNG HYUN JUNG ◽  
...  

Surface morphology and crystallinity of YVO 4: Sm 3+ thin films have an influence on the photoluminescence characteristics. The YVO 4: Sm 3+ films have been deposited on Al 2 O 3 (0001) substrates using pulsed laser deposition method. The films were grown at the various substrate temperatures changing from 500 to 700°C. The crystallinity and surface morphology of the films were investigated using X-ray diffraction (XRD) and atomic force microscopy (AFM), respectively. The results of XRD showed that YVO 4: Sm 3+ films had a zircon structure and AFM study revealed that the films consisted of homogeneous grains ranging from 100 to 400 nm depending on the deposition conditions. The photoluminescence spectra were measured at room temperature and the emitted radiation was dominated by the red emission peak at 620 nm radiated from the transition of 5 D 0-7 F 2. The crystallinity, surface morphology, and photoluminescence spectra of thin-film phosphors were highly dependent on the substrate temperature. The surface roughness and photoluminescence intensity of the films showed similar behavior as a function of substrate temperature.


Author(s):  
Mohammad Shah Jamal ◽  
M.S. chowdhury ◽  
Saraswati Bajgai ◽  
M Hossain ◽  
A. Laref ◽  
...  

Abstract The structural and optical characteristics of Nickel oxide thin films (NiOTF) formed on the soda-lime glass substrate (SLG) under vacuum and non-vacuum conditions are investigated in this work. The difference between RFMS (Radio Frequency Magnetron Sputtering; vacuum) and SP (spray pyrolysis; non-vacuum) was helpful in the development of NiOTF. Deposited films data for this study were characterized by using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), scanning probe microscopy (SPM), and optical spectrophotometer. Structural studies disclosed that NiOTF developed via RFMS technique was more uniform with large crystals and lower surface roughness in contrast to that of developed via SP technique. Transmittance spectrum divulged that the transmittance of spray pyrolyzed NiO films are ~10% less than that of ones produced by RFMS. Urbach energy analysis of NiOTF developed by RFMS and SP affirmed the findings of structural studies.


Sign in / Sign up

Export Citation Format

Share Document