Optimization of Parameter for HSS Tool Wear by Using Taguchi Method and Finite Element Method

2013 ◽  
Vol 315 ◽  
pp. 151-155
Author(s):  
M.R. Ibrahim ◽  
A.R. Abd. Kadir ◽  
M.S. Omar ◽  
S. Sulaiman ◽  
M.H. Osman

This paper presents the combination between the simulation analysis of FEM (DFORM 3D) and Taguchi method approach. The Taguchi method was used to find the optimize parameter design contribute to Flank wear. The parameters were evaluated are coated surface treatment, cutting speed and feed rate. The Usuis model carried out to measure the flank wear size. Furthermore, ANOVA analysis was used out to identify the influence factors contribute to tool wear in the signal to noise ratio. The experiments were conducted on AL6061 by using High Speed Steel Tool (HSS) in face milling cutting. It shown that, the coated surface treatment is the most significant parameter which can reduce the tool wear value.

Author(s):  
Muataz Al Hazza ◽  
Khadijah Muhammad

High speed machining has many advantages in reducing time to the market by increasing the material removal rate. However, final surface quality is one of the main challenges for manufacturers in high speed machining due to the increasing of flank wear rate. In high speed machining, the cutting zone is under high pressure associated with high temperature that lead to increasing of the flank wear rate in which affect the final quality of the machined surface. Therefore, one of the main concerns to the manufacturer is to predict the flank wear to estimate and predict the surface roughness as one of the main outputs of the machining processes. The aim of this study is to determine experimentally the optimum cutting parameters: depth of cut, cutting speed (Vc) and feed rate (f) that maintaining low flank wear (Vb). Taguchi method has been applied in this experiment. The Taguchi method has been universally used in engineering analysis.  JMP statistical analysis software is used to analyse statically the development of flank wear rate during high speed milling of hardened steel AISI D2 to 60 HRD. The experiment was conducted in the following boundaries: cutting speed 200-400 m/min, feed rate of 0.01-0.05 mm/tooth and depth of cut of 0.1-0.2 mm. Analysis of variance ANOVA was conducted as one of important tool for statistical analysis. The result showed that cutting speed is the most influential input factors with 70.04% contribution on flank wear.


Author(s):  
Justin L. Milner ◽  
Jeffrey A. Beers ◽  
John T. Roth

Machining is a popular and versatile manufacturing process that is widely used in today’s industry when producing metallic parts; however, limited tool life can make this an expensive and time consuming fabrication technique. Consequently, methods that decrease the rate of tool wear and, thus, increase tool longevity are a vital component when improving the efficiency of machining processes. To this end, cryogenically treating cutting tools (especially high-speed steel tooling) is becoming more commonplace since research has shown that the treated tooling exhibits significantly higher wear resistance. At this point, however, the effect of cryogenic treatments on ceramic tooling has not been established. Considering this, the research herein presents a feasibility study on the effectiveness of using cryogenic treatments to enhance the wear resistance of WG-300 whisker-reinforced ceramic cutting inserts. To begin, the effect of the cryogenic treatment on the insert’s hardness is examined. Subsequently, tool wear tests are conducted at various cutting speeds. Through this study, it is shown that cryogenically treating the ceramic inserts decreases the rate of tool wear at each of the cutting speeds that were tested. However, the degree of wear resistance introduced by cryogenically treating the inserts proved to be highly dependent on the cutting speed, with slower speeds exhibiting greater improvements. Thus, based on this initial study, the cryogenic treatment of ceramic tooling appears to produce beneficial results, potentially increasing the overall efficiency of machining processes.


2020 ◽  
Vol 62 (9) ◽  
pp. 957-961
Author(s):  
Nursel Altan Özbek ◽  
Metin İbrahim Karadag ◽  
Onur Özbek

Abstract This paper presents the effect of cutting tool, cutting speed and feed rate on the flank wear and surface roughness of austenitic stainless steel (AISI 304) during wet turning. Turning tests were designed based on the Taguchi method (L18). An orthogonal array, the signal-to-noise ratio (S/N) and the ANOVA were used to investigate the machinability of AISI 304 stainless steel with PVD and CVD coated tungsten carbide inserts. As a result of ANOVA, it was found that the feed rate was the most effective parameter on both flank wear and surface roughness.


2014 ◽  
Vol 590 ◽  
pp. 645-650 ◽  
Author(s):  
Eshetu D. Eneyew ◽  
Mamidala Ramulu

The condition of the cutting tool when drilling composite materials is the controlling factor for the surface integrity of hole produced. The high rate of tool wear when drilling composite materials makes finding a way to monitor the condition of the cutting tool without interrupting the drilling process a great necessity. Inspecting the condition of the drill between or during the drilling process is not practical or economical. In an attempt to tackle this problem, a new approach of on-line tool wear monitoring method using an air-coupled audio microphone is proposed. An experimental investigation was conducted on multi-directional carbon fiber reinforced plastic (CFRP) composite material using a high speed steel (HSS) drill. The result shows that, the amplitude of the acoustic signal from the microphone decreases when the amount of flank wear increases and the amplitude of thrust force and torque increases with the increase of the flank wear. This result demonstrates that the proposed approach can be used as an effective and economical tool for on-line monitoring of cutting tool condition.


2012 ◽  
Vol 566 ◽  
pp. 217-221 ◽  
Author(s):  
Ali Davoudinejad ◽  
Sina Alizadeh Ashrafi ◽  
Raja Ishak Raja Hamzah ◽  
Abdolkarim Niazi

Aluminum alloy is widely used in industry and various researches has been done on machiability of this material mainly due to its low weight and other superior properties. Dry machining is still interesting topic to reduce the cost of manufacturing and environmental contaminations. In present study dry machining of Al 2024 investigated on tool life, tool wear mechanisms, hole quality, thrust force and torque. Different types of high speed steel (HSS) tools utilized at constant feed rate of 0.04 mm/rev and cutting speeds within the range of 28 and 94 m/min. Experimental results revealed that HSCo drills, performed better than HSS drills in terms of tool life and hole quality. The main wear mechanisms which analyzed by scanning electron microscope found abrasive and adhesion wear on flank face, besides, BUE observed at chisel and cutting edges. However tool wear and BUE formation found more significant at high cutting speed. In terms of thrust force, two facet HSCo tools, recorded higher thrust force than four facet HSS drills.


2017 ◽  
Vol 749 ◽  
pp. 3-8
Author(s):  
Tomonori Kimura ◽  
Takekazu Sawa ◽  
Tatsuyuki Kamijyo

Stainless steel is an excellent material that has properties such as heat and corrosion resistance. Thus, stainless steel is used as a material in steam turbine blades. Steam turbine blades are mainly manufactured using two methods. One is the cutting of unforged metal ingots. Another is the cutting of forged parts. Small blades are made by cutting metal ingots. Large blades are made by cutting forged parts. The mechanical characteristics of a metal ingot and a forged part, such as hardness and toughness, are almost the same. There were not researches related to a relationship between “an unforged ingot and a forged part of stainless steel” and “the differences of the tool wear and the finished surface by high-speed milling”.In this study, the high-speed milling of stainless steel was attempted for high-efficiency cutting of a steam turbine blade. The differences of the tool wear and the finished surface in the cuttings of an unforged ingot and a forged part were investigated. In the experiment, the cutting tool was a TiAlN coating radius solid end mill made of cemented carbide. The diameter of the end mill was 5 mm, and the corner radius was 0.2 mm. The cutting speed were 100 m/min-600 m/min. The workpieces used were a metal ingot and a forged part of stainless steel. In the results, it was found that the differences of the tool wear and the finished surface in the cuttings of an unforged ingot and a forged part. In the case of the unforged ingot, the flank wear became large with increasing cutting speed. On the other hand, in the case of forged part, the flank wear rapidly increased at a cutting speed of 100 m/min. In addition, the flank wear became smaller than the cutting speed 100 m/min at the cutting speed 200 m/min. Further, the flank wear became large with increasing cutting speed at cutting speeds higher than 200 m/min. That is, the flank wear was at a minimum at a cutting speed of 200 m/min. Although it could not be confirmed the characteristic of high speed milling at an unforged ingot, it has been identified at a forged part.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Fritz Klocke ◽  
Kristian Arntz ◽  
Gustavo Francisco Cabral ◽  
Martin Stolorz ◽  
Marc Busch

In this experimental study, the cutting performance of ball-end mills in high-speed dry-hard milling of powder metallurgical steels was investigated. The cutting performance of the milling tools was mainly evaluated in terms of cutting length, tool wear, and cutting forces. Two different types of hardened steels were machined, the cold working steel HS 4-2-4 PM (K490 Microclean/66 HRC) and the high speed steel HS 6-5-3 PM (S790 Microclean/64 HRC). The milling tests were performed at effective cutting speeds of 225, 300, and 400 m/min with a four fluted solid carbide ball-end mill ( = 6, TiAlN coating). It was observed that by means of analytically optimised chipping parameters and increased cutting speed, the tool life can be drastically enhanced. Further, in machining the harder material HS 4-2-4 PM, the tool life is up to three times in regard to the less harder material HS 6-5-3 PM. Thus, it can be assumed that not only the hardness of the material to be machined plays a vital role for the high-speed dry-hard cutting performance, but also the microstructure and thermal characteristics of the investigated powder metallurgical steels in their hardened state.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1628
Author(s):  
Mohd Fathullah Ghazali ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Shayfull Zamree Abd Rahim ◽  
Joanna Gondro ◽  
Paweł Pietrusiewicz ◽  
...  

This paper reports on the potential use of geopolymer in the drilling process, with respect to tool wear and surface roughness. The objectives of this research are to analyze the tool life of three different economy-grade drill bit uncoated; high-speed steel (HSS), HSS coated with TiN (HSS-TiN), and HSS-cobalt (HSS-Co) in the drilling of geopolymer and to investigate the effect of spindle speed towards the tool life and surface roughness. It was found that, based on the range of parameters set in this experiment, the spindle speed is directly proportional to the tool wear and inversely proportional to surface roughness. It was also observed that HSS-Co produced the lowest value of surface roughness compared to HSS-TiN and uncoated HSS and therefore is the most favorable tool to be used for drilling the material. For HSS, HSS coated with TiN, and HSS-Co, only the drilling with the spindle speed of 100 rpm was able to drill 15 holes without surpassing the maximum tool wear of 0.10 mm. HSS-Co exhibits the greatest tool life by showing the lowest value of flank wear and produce a better surface finish to the sample by a low value of surface roughness value (Ra). This finding explains that geopolymer is possible to be drilled, and therefore, ranges of cutting tools and parameters suggested can be a guideline for researchers and manufacturers to drill geopolymer for further applications.


2010 ◽  
Vol 33 ◽  
pp. 200-203 ◽  
Author(s):  
Y.J. Wang ◽  
Ming Zhou ◽  
S.N. Huang ◽  
Y.J. Zhang

This paper presents an experimental study in high speed milling of metal matrix composites (MMCs). Machining tests were carried out on a high speed milling machine by using TiAlN coated tools and chemical vapour deposition (CVD) diamond coated tools. The cutting tool wear was investigated using an optical microscope and a scanning electron microscope (SEM). The experimental results showed that flank wear is the dominant tool wear mode and abrasive wear and adhesive wear appears to be the main wear mechanism. The build-up edge (BUE) exists during the machining process at a certain speeds. Cutting speed is a dominant factor affecting the flank wear. Generally, high cutting speed lead to severe tool wear, but there seemed to be a certain cutting speed which will cause the least tool wear. Furthermore, there exists a cutting speed limit for both TiAlN coated tools and CVD coated diamond tools in high speed milling of MMCs, beyond which the edge chipping will cause the tool failure very soon.


Sign in / Sign up

Export Citation Format

Share Document