The Influence of Heat Treatment on the Properties of Breeding Bio-Container

2013 ◽  
Vol 341-342 ◽  
pp. 119-123
Author(s):  
Hong Ying Huang ◽  
Guo Feng Wu ◽  
En Hui Sun ◽  
Zhi Zhou Chang

An environmental, biodegradable breeding container made from rice hull and starch adhesive was produced by a hot-press machine. The heat treatment was introduced to improve the properties of breeding container. The dry and wet strength, water absorption, FTIR, biodegradation, and thermal stability were tested and discussed. The results showed that curing temperature played a great influence of on the dry and wet strength of breeding container. The dry and wet strength was increased with the temperature rise. The water absorption decreased from 89.1% to 50.9%. Pattern of the peak at 3400 cm-1, 2900 cm-1, 1640 cm-1, 1500 cm-1and 1050 cm-1has changed after the heat treatment of specimens. The hydrogen bond was likely produced between straw and adhesive during the heat treatment process. The degradation rate of specimens after heat treatment was lower because the high temperature led to deeper cross-linked reaction. The TGA showed that heat treatment can improve the thermal stability, while the degradability was not changed.

2007 ◽  
Vol 546-549 ◽  
pp. 825-828 ◽  
Author(s):  
Man Jin ◽  
Jing Li ◽  
Guang Jie Shao

The precipitation behaviors and microstructures of nano-precipitates in AA6082 Al-Mg-Si alloy with and without Cu additions during heat treatment process were studied using hardness measurements, TEM, mechanical tests and 3DAP. Meanwhile, the softening process of 6082 alloys with Cu and without Cu, isothermally conditioned at 250°C, has also been investigated. It was found that the rate of age hardening, mechanical properties and thermal stability are higher for the Cu-containing alloy. The TEM and 3DAP observations showed that Q’ precipitates were existed after aged at 170°C for 8h in the alloy with Cu addition. Comparing the hardness, mechanical properties and thermal stability curves, it was concluded that the Q’ precipitates play a major role in improving the age hardening kinetics and properties of 6082 alloy with Cu addition.


2016 ◽  
Vol 78 (10) ◽  
Author(s):  
Tay Chen Chiang ◽  
Sinin Hamdan ◽  
Mohd Shahril Osman

This study examined the effect of density on the thermal stability, physical and mechanical properties of sago particleboard. Sago particles and Urea Formaldehyde (UF) were used as raw materials in the fabrication process. The fabrication and testing method were based on JIS A 5908 standard. The samples were prepared based on different desired density and went through a series of thermal stability, mechanical and physical tests. Mechanical properties of the composites were characterized by tensile, flexural, impact strength, screw test and internal bonding which had great influence on the particleboard performance. All the panels were tested for physical properties (water absorption and thickness swelling) to identify their use for indoor application. Thermal properties like thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) for the Sago/UF composites were analysed. The results showed particleboard with 800 kg/m3 exhibited the optimum strength on Internal Bonding, Screw test, Bending and Flexure test. Particleboard with 700 kg/m3 has better performance on Impact test. 500 kg/m3 showed better curing properties with DSC. TGA showed that all the Sago/UF particleboard decompose with single-stage and were decomposed into three main steps like water absorption, volatile and char.


2011 ◽  
Vol 194-196 ◽  
pp. 1815-1818
Author(s):  
Guo Feng Wu ◽  
Qian Lang ◽  
Bin Wang ◽  
Yi Fei Jiang ◽  
Jun Wen Pu

In this research, the chemical and multilayer hot-press drying was used to modify poplar wood. The timbers were compressed and dried in the multilayer hot-press drying kiln. The combination of chemical modification and hot-press drying can improve the mechanical properties. The influence of chemical and hot-press drying on the compressive strength parallel to grain, the bending strength, the density, the water absorbent and the crystallinity of poplar wood have been investigated in this study. The chemical treated conditions close to real technological regimes selected. The samples were impregnated with three conditions. The samples were dried in a hot-press drying kiln for 130hrs. It was showed that the urea carbamate and hot-press drying treatment increase the properties. The density and mechanical properties increased with increasing urea carbamate, while the water absorption decreased. The crystallinity is 37.03%, 37.11%, 37.78%, separately, compared with the natural wood of 35.09%. The TAG showed the thermal stability increased.


2014 ◽  
Vol 670-671 ◽  
pp. 56-60
Author(s):  
H.S. Liu ◽  
M.H. Wang ◽  
X.Y. Ge ◽  
H.S. Luo

The effect of heat treatment on transformation of residual austenite in bearing steel is studied, by adding the cryogenic treatment into the normal heat treatment process. The results indicate that the residual austenite content is decreased and the hardness is improved obviously, when putting the cryogenic treatment at -70°C or lower directly behind the quenching process. While when the tempering is added between quench and cryogenic treatment, the temperature of cryogenic treatment must be much lower than -70°C to offset the thermal stability of residual austenite, which is given by tempering.


Crystals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 74 ◽  
Author(s):  
Yuejian Jiao ◽  
Zhen Shao ◽  
Sanbing Li ◽  
Xiaojie Wang ◽  
Fang Bo ◽  
...  

We present a simple and effective way to improve the thermal stability of nano-domains written with an atomic force microscope (AFM)-tip voltage in a lithium niobate film on insulator (LNOI). We show that nano-domains in LNOI (whether in the form of stripe domains or dot domains) degraded, or even disappeared, after a post-poling thermal annealing treatment at a temperature on the order of ∼100 ∘ C. We experimentally confirmed that the thermal stability of nano-domains in LNOI is greatly improved if a pre-heat treatment is carried out for LNOI before the nano-domains are written. This thermal stability improvement of nano-domains is mainly attributed to the generation of a compensating space charge field parallel to the spontaneous polarization of written nano-domains during the pre-heat treatment process.


2008 ◽  
Vol 3 (2) ◽  
pp. 63-69
Author(s):  
M. Sivapragash ◽  
◽  
V. Sateeshkumar ◽  
P.R. Lakshminarayanan ◽  
R. Karthikeyan ◽  
...  

Author(s):  
Karanbir Singh ◽  
Aditya Chhabra ◽  
Vaibhav Kapoor ◽  
Vaibhav Kapoor

This study is conducted to analyze the effect on the Hardness and Micro Structural Behaviour of three Sample Grades of Tool Steel i.e. EN-31, EN-8, and D3 after Heat Treatment Processes Such As Annealing, Normalizing, and Hardening and Tempering. The purpose of Selecting Tool Steel is Because Tool Steel is Mostly Used in the Manufacturing Industry.This study is based upon the empirical study which means it is derived from experiment and observation rather than theory.


2021 ◽  
Vol 875 ◽  
pp. 160055
Author(s):  
Hua Guo ◽  
Fawei Tang ◽  
Yong Liu ◽  
Zhi Zhao ◽  
Hao Lu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document